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This study investigates the performance improvement method of Pelican 
Optimization Algorithm (POA) through two different methods, namely 
Conjugate Gradient (CG) and Osprey Optimization Algorithm (OOA). The 
(POA) algorithm is a super-intuitive algorithm that has the ability to solve 
complex optimization problems. It has a distinctive exploration ability, but it 
has some problems in finding the solution accurately and quickly through the 
exploitation method. Therefore, (POA) was improved by exploiting the (CG) 
algorithm, which is included as an initial community for the (POA) algorithm 
in the first hybridization, which caused a simple improvement coupled with 
the original (POA) results. (POA) was hybridized by using the exploitation 
method of the (OOA) algorithm, which has proven its strength in finding the 
optimal solution accurately and quickly through the results, which were 
compared based on important measures such as the convergence rate, 
solution quality, and convergence speed shown through the graph, and the 
performance was evaluated through some global test functions. This new 
approach can be used in many scientific applications and fields such as 
economics, engineering, medicine, and biological sciences. 
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Introduction 
       Recent years have been an important stage in the study of algorithmic optimization due to 
the increasing complexity of real-world methods in many fields such as artificial intelligence, 
economics, and medicine. This is due to the ability of algorithms to explore large search areas 
in addition to their speed and effective ability to optimize these complex problems. 
Computational algorithms are considered one of the most important methods used in the real 
world for optimization in many fields such as energy and production, especially complex 
nonlinear problems that are difficult to solve using traditional methods. This has led to the 
search for new and advanced algorithms [1]. Urban expansion and global population growth 
have led to an increase in the demand for energy and the need for energy-efficient heat 
exchangers, especially heat exchangers, which have been achieved by integrating gray matter 
relationships (GRAs), genetic algorithms (GAs), and artificial neural networks (ANNs) to 
enhance energy efficiency [2]. Although there are many algorithms, heuristic algorithms are 
natural processes, such as firefly and cuckoo algorithms, swarm optimization, and others, 
which are widely used in optimization problems across different fields [3,4]. One of the 
nonlinear search methods is the conjugate gradient method, which is one of the most important 
methods used to solve unconstrained optimization problems. This method is effective with 
large-scale problems because it relies on first-order calculations and does not require second-
order calculations [5]. The optimization conditions and basic properties of unconstrained 
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optimization are among the most important studies that researchers seek to achieve in 
conjugate gradient algorithms, in addition to modified hybridization methods to improve 
numerical performance. With a focus on the focused analysis of how to update the search 
direction and methods of calculating the step length, which helps in performing the 
optimization [6,7]. The POA algorithm has been studied by a number of researchers and its 
exploratory ability has been highlighted, which is derived from its hunting style such as flying 
and diving in addition to its large-area search style [8]. This algorithm is suitable for solving 
optimization problems due to its ability to solve complex obstacles according to [9].  in order 
to reach an optimal solution, which usually needs to be optimized during the exploitation phase. 
However, by mimicking the same hunting methods of the osprey, which include diving and 
hovering near the prey, the osprey algorithm focuses more on rapid exploitation [10]. Using 
this approach, the algorithm may quickly optimize solutions at optimal locations; however, its 
tendency to over-exploit local optimization may impair performance on more complex and 
multimodal functions [11].One of the methods for evaluating the performance of (CG) for 
training (forward-feeding artificial neural networks), this method helped improve the 
parameters of the (CG) algorithm by making modifications to the parameters used in finding 
the search direction, which helped improve the convergence speed in addition to reducing the 
computation time [12]. Another method for optimization is the hybrid method, which is the 
process of merging two algorithms either through initial communities or by merging equations 
through exploration and exploitation methods. Such as developing a hybrid algorithm that 
relies on classical quantum computing with Penders partitioning to solve the problem of power 
systems and mixed programming problems [13]. As well as the group search algorithm and 
merging it with the particle swarm optimization algorithm, which has proven its effectiveness 
and ability to solve complex engineering and numerical problems [14]. As well as the group 
search algorithm and merging it with the particle swarm optimization algorithm, which has 
proven its effectiveness and ability to solve complex engineering and numerical problems [15]. 
One of the hybrid algorithms is the algorithm that combines the deep learning network and the 
Seagull Adapted Elephant Herding algorithm, which was used to detect security attacks 
supported by the Internet in cyber systems, and which has shown its effectiveness in improving 
and accuracy in detection [16]. In this paper, two different approaches are proposed to improve 
and hybridize the Pelican algorithm (POA) in two different ways. The first is by proposing the 
conjugate gradient method which will be used to improve the (POA) algorithm through initial 
communities. The second is by using the Osprey optimization algorithm (OOA) which will be 
integrated with the Pelican algorithm through the exploitation method.  
 
 Conjugate Gradient Algorithm (CG) 
     The CG algorithm is a mathematical method used in indirect optimization to find the 
minimum or maximum of a function. It is usually used in complex nonlinear equation systems 
to solve. This algorithm is also effective for solving positively definite symmetric linear systems, 
which are difficult to find by numerical or traditional methods. It relies on the conjugate search 
direction instead of the classical gradient direction. The algorithm works by directing the 
search in orthogonal directions used to improve convergence to the optimal solution with 
greater accuracy, efficiency and speed [17]. Below we propose a new approach to improve the 
conjugate gradient algorithm by proposing and deriving a new parameter which will be used 
to improve the Pelican algorithm (POA). Optimization can be defined as the method by which 
we can reach the best solutions to a given problem. Which has lower and upper bounds for the 
problem that contains n variables, where n≥0. The global minimum is the lower factor of the 
function and is the global minimum within the domain of the function. While the local minimum 
is the lowest point within its domain. The main goal of globally convergent algorithms is to find 
the global minimum, while locally convergent algorithms aim to determine the local minimum 
[18]. 
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The proposed improved conjugate gradient (CG) method 

      Salihu et al. in 2023 proposed a new proof for the conjugate spectral gradient method as 
follows [19]: 
𝑑𝑘+1 = −𝜃𝑔𝑘+1 + 𝛽𝑘

𝐵𝑀𝐼𝐿𝑑𝑘   , 𝑘 ≥  0        

Where is 𝛽𝑘
𝐵𝑀𝐼𝐿 a parameter defined in [20] as:  𝛽𝑘

𝐵𝑀𝐼𝐿 = 
 𝑔𝑘+1

𝑇   𝑦𝑘 

‖𝑑𝑘‖2    

 𝜃 = 𝜂 +
‖𝑦𝑘‖

‖𝑑𝑘‖
   , 𝜂 > 0 ,   Where 𝜃 is the spectral coefficient. It  is the angle between the search 

direction 𝑑𝑘 and the negative gradient −𝑔𝑘+1 , and  𝜃 ∈ (
𝜋

2
 , 𝜋 ). , 𝜂 is a parameter that adjusts 

the search direction during iterations to ensure convergence without resorting to linear search 
rules [19]. 
New let 𝑑𝑘+1

𝐶𝐺 = 𝑑𝑘+1
𝑆𝐾𝐴 , where SKA is the proposed search direction in [20]. 

−𝑔𝑘+1 + 𝛽𝑘
𝑁𝑒𝑤𝑑𝑘 = −𝜃𝑔𝑘+1 + 𝛽𝑘

𝐵𝑀𝐼𝐿𝑑𝑘,   We get and multiply both sides of the equation by 𝑦𝑘
𝑇 

we get. 
−𝑦𝑘

𝑇𝑔𝑘+1 + 𝛽𝑘
𝑁𝑒𝑤𝑦𝑘

𝑇𝑑𝑘 = −𝜃𝑦𝑘
𝑇𝑔𝑘+1 + 𝛽𝑘

𝐵𝑀𝐼𝐿𝑦𝑘
𝑇𝑑𝑘 

By doing some steps to simplify the relationship we get. 

𝛽𝑘
𝑁𝑒𝑤 = (1 − 𝜃)

𝑦𝑘
𝑇  𝑔𝑘+1

𝑦𝑘
𝑇 𝑑𝑘

+
𝑦𝑘

𝑇  𝑔𝑘+1

 ‖𝑑𝑘‖2
.
𝑦𝑘

𝑇 𝑑𝑘

𝑦𝑘
𝑇 𝑑𝑘

 , where    𝛽𝑘
𝐻𝑆 = 

𝑦𝑘
𝑇  𝑔𝑘+1

𝑦𝑘
𝑇 𝑑𝑘

 .  

𝛽𝑘
𝑁𝑒𝑤 = (1 −  𝜃)𝛽𝑘

𝐻𝑆 +
𝑦𝑘

𝑇  𝑔𝑘+1

 ‖𝑑𝑘‖2                                                                                          (1)  

 
Modified algorithm steps  
Step 1. Choose an initial value, mode, 𝑔0 = ∇ 𝑓(𝑥0) , 𝑑0 = −𝑔0 , 𝑘 ≥  0 
Step 2. Calculate the step length value  𝜆𝑘 ≥  0 , which should achieve Wolfe condition. 
Step 3. If ‖gk+1‖ <∈ it stops, otherwise update the variables.𝑥𝑘+1 =  𝑥𝑘 + 𝜆𝑘𝑑𝑘   
Step 4. Calculate the new trend through, where 𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘

𝑁𝑒𝑤𝑑𝑘, 𝛽𝑘
𝑁𝑒𝑤 is the new 

update coefficient. 
Step 5. Increase the meter 𝑘 by 1, then return to step 2. 
 
Convergence Analysis of New Conjugate Vector Method 
     We will investigate the necessary condition for convergence, namely the sufficient descent 
property of our algorithm. Importance of this property determines efficient convergence 
properties that search direction always landscape with negative gradient at every iteration of 
the algorithm. Consequently, it helps in the gradient descent of objective function to reach an 
optimal solution [21]. 
Assumption 1. Function f is bounded by set 𝑆 =  {𝑥 ∈  ℝ𝑛 ∶  𝑓(𝑥)  ≤  𝑓 (𝑥0)}.  and function 
with the gradient, where then there is a Lipschitz constant 𝐿 > 0 such that ‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤ 
𝐿‖𝑥 − 𝑦‖, ∀x, y ∈S. 
Theorem 1. The value of  search direction dk used in the proposed algorithm. for CG, attains 
the property of adequate gradients for all k, subject to Wolfe's conditions on step size dk are 
satisfied. 
𝑔𝑘+1

𝑇 𝑑𝑘+1 ≤ −𝜇‖𝑔𝑘+1‖
2 ,    𝜇 > 0                                                                                       (2) 

By the method of mathematical induction, we will prove the above relationship. 
If  𝑘 = 0 ,         𝑑0 = −𝑔0 ⟹ 𝑔0

𝑇𝑑0 = −‖𝑔0‖
2 < 0 the relationship is true. 

We assume that the relation is true for all values 𝑘 ≥ 0 , that is, 

 𝑔𝑘
𝑇𝑑𝑘 < 0 ,   𝑔𝑘

𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖
2      ,   𝑐 > 0                                                                         (3) 

New we prove that the relationship at  𝑘 + 1. 
𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘

𝑁𝑒𝑤𝑑𝑘                                                                                                        (4) 
Multiplying both sides of equation (4) by the magnitude 𝑔𝑘+1

𝑇 gives us 
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𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + [(1 −   𝜂)
𝑦𝑘

𝑇  𝑔𝑘+1

𝑦𝑘
𝑇 𝑑𝑘

+
𝑦𝑘

𝑇  𝑔𝑘+1

 ‖𝑑𝑘‖2
 ] 𝑔𝑘+1

𝑇 𝑑𝑘 

Using Cauchy-Schwarz inequality we get, 𝑦𝑘
𝑇  𝑔𝑘+1 ≤ ‖𝑦𝑘‖‖ 𝑔𝑘+1‖𝑦𝑘

𝑇 𝑑𝑘  ≤  ‖𝑦𝑘‖‖𝑑𝑘‖ . then 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + (1 −   𝜂)
‖𝑦𝑘‖‖𝑑𝑘‖ ‖𝑔𝑘+1‖

2

‖𝑦𝑘‖‖𝑑𝑘‖
+

‖𝑦𝑘‖‖𝑑𝑘‖‖𝑔𝑘+1‖
2

 ‖𝑑𝑘‖2
 

𝑔𝑘+1
𝑇 𝑑𝑘+1 = −‖𝑔𝑘+1‖

2 + (1 −  𝜂 −
‖𝑦𝑘‖

‖𝑑𝑘‖
) ‖𝑔𝑘+1‖

2 +
‖𝑦𝑘‖ ‖𝑔𝑘+1‖

2

 ‖𝑑𝑘‖
 

𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −𝜂‖𝑔𝑘+1‖

2 

Now we take the special cases of     𝜂  

case 1:   if  𝜂 = 1,  then     𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −‖𝑔𝑘+1‖

2 

case 2:   if  𝜂 =
‖𝑦𝑘‖

‖𝑑𝑘‖
 ,  then     𝑔𝑘+1

𝑇 𝑑𝑘+1 ≤ −(
‖𝑦𝑘‖

‖𝑑𝑘‖
) ‖𝑔𝑘+1‖

2 

case 3:    if    𝜂 = 0.5 ,  then      𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −0.5‖𝑔𝑘+1‖

2 

We notice that all cases achieve the relationship.    𝑔𝑘+1
𝑇 𝑑𝑘+1 ≤ −𝜇‖𝑔𝑘+1‖

2   ,   𝜇 > 0   
 

Comprehensive investigation of the convergence of the proposed algorithm. 

      We will now show that the proposed conjugate gradient method achieves the 
comprehensive convergence property by proving the following theorem: 

Lemma 1.  It is suggested that Assumption (1) is satisfied, and that the CG technique is also 
satisfied, since 𝑑𝑘is the The search direction for the slope and 𝛼𝑘 is generated by the strong 

Wolff condition (SWP).), then if       ∑
1

‖𝑑𝑘+1‖2
∞
𝐾=1 = ∞  then,  lim

𝑘→∞
𝑖𝑛𝑓‖𝑔𝑘‖ = 0. 

Theorem 3. Suppose Assumption (1) and the proposed conjugate gradient method satisfied 
in the search direction 𝑑𝑘, also step length 𝛼𝑘 is generated from conditions (SWP), then 
lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0. 

Proof. Since the algorithm satisfies the theorem (1), and if 𝑔𝑘+1 ≠ 0 , we will prove that it is 
constrained from above‖𝑑𝑘+1‖, and by taking ‖. ‖ for both sides of equation (4) we get, 
‖𝑑𝑘+1‖ = ‖−𝑔𝑘+1 + 𝛽𝑘

𝑁𝑒𝑤𝑑𝑘‖ 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |𝛽𝑘
𝑁𝑒𝑤|‖𝑑𝑘‖                                                                                           (5)  

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |[(1 −  𝜂 −
‖𝑦𝑘‖

‖𝑑𝑘‖
)

‖𝑦𝑘‖ ‖𝑔𝑘+1‖

‖𝑦𝑘‖ ‖𝑑𝑘‖
+

‖𝑦𝑘‖ ‖𝑔𝑘+1‖

 ‖𝑑𝑘‖2
 ]| ‖𝑑𝑘‖ 

‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |(1 −  𝜂)|‖𝑔𝑘+1‖  
Case 1.  When 𝜂 = 1, we get   ‖dk+1‖ ≤ ‖gk+1‖ 
‖𝑑𝑘+1‖ ≤  𝛾1 ,                  𝛾1 = ‖𝑔𝑘+1‖  

1

‖𝑑𝑘+1‖
≥

 1 

𝛾1
   ⟹    ∑

1

‖𝑑𝑘+1‖2
= ∑

 1 

𝛾1
2

∞

𝑘=1

∞

𝑘=1

= 
 1 

𝛾1
2
∑ 1

∞

𝑘=1

 =  +∞ 

Case 2. When 𝜂 =
‖𝑦𝑘‖

‖𝑑𝑘‖
 , we get     ‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |(1 − 

‖𝑦𝑘‖

‖𝑑𝑘‖
)| ‖𝑔𝑘+1‖ 

‖𝑑𝑘+1‖ ≤  𝛾2       ,         𝛾2 = ‖𝑔𝑘+1‖ + |(1 − 
‖𝑦𝑘‖

‖𝑑𝑘‖
)| ‖𝑔𝑘+1‖  
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1

‖𝑑𝑘+1‖
≥

 1 

𝛾2
  ⟹ ∑

1

‖𝑑𝑘+1‖2
= ∑

 1 

𝛾2
2

∞

𝑘=1

∞

𝑘=1

= 
 1 

𝛾2
2
∑ 1

∞

𝑘=1

 =  +∞ 

Case 3. When  𝜂 = 0.5 we get   ‖𝑑𝑘+1‖ ≤ 1.5‖𝑔𝑘+1‖ 
‖𝑑𝑘+1‖ ≤  𝛾3       ,         𝛾3 =  1.5‖𝑔𝑘+1‖  

1

‖𝑑𝑘+1‖
≥

 1 

𝛾3
  ⟹ ∑

1

‖𝑑𝑘+1‖2
= ∑

 1 

𝛾3
2

∞

𝑘=1

∞

𝑘=1

= 
 1 

𝛾3
2
∑ 1

∞

𝑘=1

 =  +∞ 

Note that all cases are true. Therefore,        lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0    

 
Pelican Optimization Algorithm (POA) 
       Pelican is a water bird of the pelican family. It has a huge body and long beak made up of a 
bag which it uses to catch fish and other various foodstuffs. This is an animal which is gregarious 
in nature. Pelican mostly in groups of a few hundred. The pelican can weigh anything from 2.75 
to 15 kg. Its length is between 1.06 and 1.85 meters, which it is considered a large bird. It has a 
wingspan as large as three meters. This size provides both stability for long distance flights and 
a lot of lifting force for take-off. Pelicans have sophisticated social behaviors. A flock of pelicans 
will work together to find food. When it discovers a school of fish, the pelican begins to dive to 
depths anywhere from 10-20 meters. Once it has dived, it starts slowly flapping its broad wings 
on the water's surface thus moving the fish over towards areas shallower in depth, making them 
easier to capture. 
The Pelican Optimization Algorithm (POA)is a population-based algorithm that relies on simple 
heuristics and rules to find optimal solutions. Each pelican represents a candidate solution in 
the search space. The algorithm iteratively updates these positions, using strategies which 
mimic the natural patterns foraging birds carry out as they look over landscapes in search of 
food. 
 
Inspirations and Mathematical Model (POA) 
      The (POA) is based on the foraging behavior of pelicans and attempts to solve optimization 
problems. 
The algorithm starts by initializing the population where the algorithm is based on a random 
set of individuals; in fact, each individual represents a candidate. The location of each pelican 
in the search space is determined by a certain mathematical formula. 

𝑥𝑖,𝑗  =  𝑙𝑗  +  𝑟𝑎𝑛𝑑. (𝑢𝑗 − 𝑙𝑗), 𝑖 =  1,2, … ,𝑁.   , 𝑗 =  1,2, … ,𝑚.                                    (6) 

    Where  𝑥𝑖,𝑗is the fee of the 𝑗𝑡ℎ variable indicated through the 𝑖𝑡ℎ candidate solution, 𝑁 is the 

length of the population, 𝑚 is the broad range of problem variables, rand is a random number 
comes from (0, 1), 𝑙𝑗  is the lower bound of the 𝑗𝑡ℎ problem variables, and 𝑢𝑗  is the upper bound 

of the𝑗𝑡ℎ problem variables [8]. 
Then it is converted into a population matrix where there is one candidate solution in each 
column of the population matrix, and each row represents a variable. Thus, the locations of 
pelicans for food gathering can be tracked.  

X =  

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑛]

 
 
 
 

   =  

[
 
 
 
 
𝑥1,1 … 𝑥1,𝑑 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖,1 … 𝑥𝑖,𝑑 … 𝑥𝑖,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑛,1 … 𝑥𝑛,𝑑 ⋯ 𝑥𝑛,𝑚]

 
 
 
 

                                                                         (7) 

Then evaluate the objective function The performance of each candidate is evaluated through 
the objective function vector, which helps in comparing the success rate of each individual in 
the herd. And to know the best places for each individual. 
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F   = 

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑛)]

 
 
 
 

                                                                                                                            (8) 

Pelicans rely on two main stages in their synchronized hunting strategy: 
1- Exploration phase: It represents the phase in which the pelican searches, locates the prey 
and moves towards it. This phase represents the only possible algorithmic option for 
exploring areas by searching well in different areas for alternative solutions. The goal of the 
exploration phase is to avoid choosing in non-optimal alternative solutions by searching 
widely in solutions. Which can be represented mathematically as follows: 

𝑥𝑖,𝑗
𝑝.1= {

𝑥𝑖,𝑗 +  𝑟𝑎𝑛𝑑. (𝑝.1  −  𝐼. 𝑥𝑖,𝑗)   ,    𝐹𝑝 < 𝐹𝑖

 𝑥𝑖,𝑗 +  𝑟𝑎𝑛𝑑. (𝑥𝑖,𝑗  −  𝑝.1)    ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                            (9) 

where 𝑥𝑖,𝑗
𝑝.1  represents the new state of the 𝑖𝑡ℎ  swan, which is located in dimension 𝑗 according 

to the first stage, and 𝐹𝑝 is the value of the objective function. 𝐼 is a random number that takes 

the value 1 or 2. Which is taken randomly at each iteration and for each element. When this 
value is 2, it gives more space to the element, which moves this member to another, more recent 
level of the search space. The parameter I affects the agent's ability to scan the search space 
correctly. Accordingly, according to the proposed work plan, when the objective function value 
for that position is improved, it becomes the new position of the swan. While the algorithm 
stops when moving to non-optimal positions during this type of update, which is known as 
active update. 

 𝑋𝑖 = {
 𝑋𝑖

𝑝.1 , 𝐹𝑖
𝑝.1         𝐹𝑖

𝑝.1 < 𝐹𝑖 ,

 𝑋𝑖            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  ,
                                                                                         (10)  

where 𝑋𝑖
𝑝.1  is the 𝑖𝑡ℎ  pelican's new status and 𝐹𝑖

𝑝.1 is its objective function value depending on 

phase. 
 
Exploitation phase: In this strategy, the pelican uses its wings to glide along the water above 
which it lies, providing propulsion in shallow water streams where it can approach its prey. The 
search space shrinks with this movement. This movement is described in the mathematical 
model by gradually reducing the search space to the largest solution regions through the main 
equations: where the false agents (swans) are identified at the locations of the search space 
using this equation: 

𝑥𝑖,𝑗
𝑝.2 = 𝑥𝑖,𝑗 +  𝑅. (1 − 

𝑡

𝑇
) . (2𝑟𝑎𝑛𝑑 − 1). 𝑥𝑖,𝑗                                                                    (11) 

Where 𝑥𝑖,𝑗
𝑝.2 is the new location of the 𝑖𝑡ℎ swan in dimension j. The variables 𝑅 and 𝑇 can control 

how far the algorithm searches around the location of each individual swan. 𝑅 is a constant set 
to 0.2. It helps constrain how far the algorithm searches for each swan. t is the current iteration 
of the algorithm. 𝑇 is the total number of iterations of the algorithm. 
At first, the search area is large. That is, the algorithm searches a large range of possible 
solutions. As the algorithm continues to run, the search area gets smaller. This allows the 
algorithm to better focus on the solutions that have been found. the algorithm is then updated 
to see if it should have found better locations. This is done using the equation. 

𝑋𝑖 = {
 𝑋𝑖

𝑝.2 , 𝐹𝑖
𝑝.2         𝐹𝑖

𝑝.2 < 𝐹𝑖 ,

    𝑋𝑖          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  ,
                                                                                              (12) 

where 𝑋𝑖
𝑝.2is the new position of the 𝑖𝑡ℎ pelican, and 𝐹𝑖

𝑝.2 is the value of how good this position 

is. If the new position is better than the old position, the algorithm keeps it; otherwise, it stays 
in the old position. 
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Osprey optimization algorithm (OOA) 
      The Osprey is a bird of prey also known as the "fish hawk", and its diet mainly consists of 
fish. It is characterized by specifications as it is between 50 and 66 cm long, and weighs between 
900 and 2100 grams, and the Osprey is characterized by a large wingspan ranging between 125 
and 180 cm. The Osprey has a shiny brown body, a white chest, and white feet with strong black 
claws that enable it to catch prey. The most important feature of the Osprey is its sharp vision 
that enables it to detect fish under the surface of the water while flying at medium altitudes 
ranging between 10 and 40 meters. After determining the location of the prey, it swoops down 
on the fish and dives to catch it, then carries it to a safe place to eat it [22,23]. 
 
Inspirations and Mathematical Model (OOA) 
      The Osprey Optimization Algorithm (OOA) is a new heuristic meta-algorithm inspired by the 
hunting behavior of the osprey. It is a developmental study aimed at solving engineering 
optimization problems by balancing the exploration of the solution space with the exploitation 
of promising regions to achieve the best results [22]. 
The algorithm is initially initialized in the same approach as the Pelican Algorithm (POA) where 
each fish osprey is considered as a candidate solution and then transformed into a vector, thus 
forming an OOA set of elements where the location of each element is randomly initialized in 
the search space and transformed into a matrix of osprey locations, and then the values of the 
objective function of the problem are represented as shown in Equations (6,7,8). The objective 
function is a key measure to evaluate the accuracy of the candidate solutions which represents 
the best value of the eagle location which is updated in each iteration as the location and best 
candidate solution. 
Exploration stage: Ospreys are excellent fish hunters because of their ability to detect the 
location of fish underwater due to their strong eyesight. Prey is hunted after determining its 
location by descending below the water surface. This method of updating the initial population 
of OOA is represented by modeling the bird's attack strategy on the prey, which depends largely 
on the search space and determining the best area and avoiding falling into possible local 
solutions. The location of each osprey relative to the locations of the rest of the individuals in 
the search space that has an objective function represents the best prey in the water. 
Determining the prey group relative to the predator is represented by the equation 
𝐹𝑃𝑖 = {𝑋𝑘|𝑘 ∈ {1,2, … ,𝑁} ∧ 𝐹𝑘 < 𝐹𝑖}  ∪  {𝑋𝑏𝑒𝑠𝑡}                                                           (13) 
Where 𝐹𝑃𝑖  represents the set of fish that the ith osprey can see. 𝑋𝑘 is the total number of fish, X 
best is the best solution obtained, 𝐹𝑘 is the performance value of the solution, and 𝐹𝑖  is the 
performance value of the specific solution ith that we are now analyzing. 
After randomly detecting the position of one of the fish, the osprey attacks the prey, and 
according to the movement of the bird towards the prey, this movement is simulated through 
the following relations in which the new position of the osprey is calculated. The new position 
replaces the previous position of the bird according to,  

𝑥𝑝𝑖,𝑗
1 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗  . (𝑆𝐹𝑖,𝑗  −  𝐼𝑖,𝑗. 𝑥𝑖,𝑗)                                                                                      (14) 

𝑥𝑝𝑖,𝑗
1 = {

 𝑋𝑃𝑖
1,       𝑙𝑏𝑗 < 𝑥𝑝𝑖,𝑗

1 < 𝑢𝑏𝑗 ,

 𝑙𝑏𝑗 ,       𝑥𝑝𝑖,𝑗
1 < 𝑙𝑏𝑗 ,             

 𝑢𝑏𝑗 ,       𝑥𝑝𝑖,𝑗
1 > 𝑢𝑏𝑗  .           

                                                                                    (15) 

𝑋𝑖 = {
 𝑋𝑖

𝑃1 ,             𝐹𝑃𝑖
1 < 𝐹𝑖 ,

 𝑋𝑖          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  ,
                                                                                                    (16)  

Where 𝑋𝑃𝑖
1 is the new ith osprey position based on the previous stage of OOA, 𝑥𝑝𝑖,𝑗

1  is its jth 

dimension, 𝐹𝑃𝑖
1 is the fitness function value, 𝑆𝐹𝑖 is the location of the prey chosen by the 

predator, 𝑆𝐹𝑖,𝑗  is its jth dimension, 𝑟𝑖,𝑗 ∈ [0,1] are random numbers, and 𝐼𝑖,𝑗  are random numbers 

from the set {1, 2}.                                          
Exploitation Stage: This stage depends on the process of moving the fish after catching it to a 
suitable location for eating. The natural behavior of the bird is simulated by updating the OOA 



198 
 

community. This strategy of moving the prey to a safe position leads to some changes in the 
search space, and thus an increase in the exploitation power of OOA in the local search areas 
and an increase in the convergence to a better solution than the explored solutions, as each 
position for eating the fish is calculated randomly as a safe position for eating as shown in the 
equation (17,18), and then the new position is improved through the objective function that 
replaces the previous position of the osprey as shown in equation (19). 

𝑥𝑝𝑖,𝑗
∗  =  𝑥𝑖,𝑗  +  

𝑙𝑏𝑗 +𝑟.(𝑢𝑏𝑗 −𝑙𝑏𝑗 

𝑡
, 𝑖 =  1,2, … ,𝑁.   , 𝑗 =  1,2, … ,𝑚.  , 𝑡 = 1,2, … , 𝑇          (17) 

𝑥𝑝𝑖,𝑗
∗ = {

 𝑋𝑃𝑖
∗,       𝑙𝑏𝑗 < 𝑥𝑝𝑖,𝑗

∗ < 𝑢𝑏𝑗 ,

 𝑙𝑏𝑗 ,       𝑥𝑝𝑖,𝑗
∗ < 𝑙𝑏𝑗 ,             

 𝑢𝑏𝑗 ,       𝑥𝑝𝑖,𝑗
∗ > 𝑢𝑏𝑗  .           

                                                                                         (18) 

  𝑋𝑖 = {
 𝑋𝑃𝑖

∗,             𝐹𝑃𝑖
∗ < 𝐹𝑖 ,

 𝑋𝑖                        𝑒𝑙𝑠𝑒,
                                                                                                      (19) 

where 𝑋𝑃𝑖
∗ is the new position of osprey ith based on the current stage of OOA, 𝑥𝑝𝑖,𝑗

∗  is its jth 

dimension, 𝐹𝑃𝑖
∗is the fitness function value, 𝑟𝑖,𝑗 ∈ [0,1] are random numbers, t is the algorithm's 

iteration counter, and T is the total number of iterations. 
 
Hybrid The Pelican Optimization Algorithm (POA)  
      It is known that hybrid algorithms are the latest and new methods and approaches in 
artificial intelligence and computing fields. Where the original source algorithms can be utilized 
and improved to solve problems and achieve many common goals to solve many complex 
problems through systematic interconnection and cooperative relationships between the 
attributes and style of each algorithm . 
We will now introduce the proposed algorithms (POA-CG) and (POA-AOO). 
 
Hybrid Swarm Optimization (POA) Using the Developed of CG Algorithm. 

      In this section, we show how the POA algorithm can be improved using CG, a mathematical 
optimization technique that aims to reach an optimal solution within unconstrained 
optimization problems. As for the hybrid approach, the purpose is to use CG to generate and 
modify the initial solutions that will serve as the initial solutions included in the POA algorithm 
for the search field to be used to improve the solutions in the search field. This will also help in 
reducing the search time and determining the direction of the algorithm in search and 
exploitation which are the strengths of the hybrid. However, one does not prevent facing some 
challenges such as the complexity in computation and integration of the two techniques used 
and thus tuning the parameters can lead to poor results or results that are almost identical to 
the original. Therefore, it almost always needs a strong and high-precision management to 
address any problem related to hybridization between fitness algorithms and conjugate 
gradient algorithms, as this hybridization improves the performance of POA by improving the 
initial solutions and exploring more space but more management is needed to address the 
problems of complexity and effective combinatorial integration. 
 
Flowchart Steps for Hybrid POA-CG Algorithm 
1 -  Start: In this step, parameters which include population size and maximum number of 
iterations, are defined for the algorithm setup . 
2 -  Population Initialization: As the second step, the positions of the pelican population are 
simulated within the boundaries of the search space . 
3 -  Objective function evaluation: In this function every pelican is evaluated and allocated an 
objective function . 
4 -  Identify best solution: Out of the group of current population, the best solution is determined . 
5 -  Exploration Phase (POA): It involves Exploring other new areas by pushing the pelicans 
closer to possible locations of the prey to allow the birds’ exploration . 
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6 -  Exploitation Phase (CG): After this, the best positions identified are surrounded by the 
Conjugate Gradient method to provide accurate local optimization . 
7 -  Add New Best Solution: Determine whether the better solution has been located and adjust 
the best solution which has been found . 
8 - Convergence Check: Under these conditions, the process moves to the output stage; if not, it 
returns to the exploration stage. 
9- Output: The final stage in which solution obtained through hybrid algorithm is displayed. 
 
Hybridization of Pelican Optimization Algorithm (POA) by Osprey Optimization 

Algorithm (OOA) 
       The combination of the Pelican Optimization Algorithm (POA) and the Eagle Optimization 
Algorithm (OOA) is achieved through the heuristic search directions of the Pelican Optimization 
Algorithm (POA) and the exploitation directions of the Osprey Optimization Algorithm (OOA). 
In this way, the main goal is to optimize the search strategy so that the global search and local 
search for the best solutions are provided in a balanced manner. The algorithm adheres to a 
number of equations that define the movement of agents within a specific region of the search 
space and are modified to optimize the solutions in a window of multiple iterations. 

𝑋𝑛𝑒𝑤  =  𝑋𝑖,𝑗  +  𝑟𝑎𝑛𝑑(1,1). (𝑋𝑓𝑜𝑜𝑑 −  𝐼. 𝑋𝑖,𝑗)                                                                            (20) 

If the fitness function is better, it is accepted 
If   𝑓𝑛𝑒𝑤 <  𝑓(𝑖) ⟹ 𝑋𝑖,𝑗 = 𝑋𝑛𝑒𝑤     𝑎𝑛𝑑   𝑓(𝑖) = 𝑓𝑛𝑒𝑤                                                           (21) 

Then we move to the exploitation phase, where this phase improves the solutions by taking 
advantage of the best performing solutions or specific fish positions to exploit the local areas 

𝑋𝑛𝑒𝑤−𝑃1  =  𝑋𝑖,𝑗  +  𝑟𝑎𝑛𝑑(1,1). (𝑋𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑖𝑠ℎ −  𝐼. 𝑋𝑖,𝑗)                                                         (22) 

If the fitness of this new position improves, the solution is updated 

If   𝑓𝑛𝑒𝑤𝑃1 <  𝑓(𝑖) ⟹ 𝑋𝑖,𝑗 = 𝑋𝑛𝑒𝑤𝑃1     𝑎𝑛𝑑   𝑓(𝑖) = 𝑓𝑛𝑒𝑤𝑃1                                                (23) 

The algorithm in question is based on a probabilistic model that permits repositioning of agents 
depending on the fitness level of the surrounding agents. Due to the aforementioned features, 
the algorithm uses an effective approach wherein it attempts to explore potential zones while 
also seeking the best global solution in case no neighboring agents feature higher fitness levels 
as indicated in Equation (20). During the exploitation phase described in Equation (22,23), the 
size of the movements made by the agents is decreased incrementally so that the agents’ 
convergence towards the optimal solution is performed steadily and precisely. The positions of 
the agents are modified only when the improvement occurs so that the improvement is 
guaranteed after every cycle of the iterations. 
The gradual shrinkage phase comes, where after every 10 iterations, the search space shrinks 

to push the solutions towards zero, which gradually improves the accuracy   
   𝑋𝑖,𝑗 = 0.9 . 𝑋𝑖,𝑗                                                                                                                             (24) 

Exploration in (POA) relies on a broad search of the solution space to discover the best possible 
results, but it can sometimes lead to local optimization. In contrast, exploitation in (OOA) 
focuses on improving the discovered solutions by reducing the search scope, which speeds up 
the process of finding the optimal solution. When (POA) is hybridized with (OOA), an effective 
balance is achieved between global search and local refinement, which enhances the 
algorithm's ability to find accurate solutions faster than using (POA) alone. 
Through the results obtained using MATLAB R2021a, it was shown that the hybrid algorithm 
(POA-OOA) clearly outperformed its counterparts from the three algorithms (POA-CG1), (POA-
CG2), (POA-CG3), in addition to the original algorithm (POA) through the illustrations shown in 
Figures (2). The comparison showed that (POA-OOA) reached the optimal solution by 100%, 
and this was verified on five global and exploration single-mode test functions, as shown in the 
tables 1. 
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Table 1: Standard test functions are used to evaluate the efficiency of computational 

algorithms. 
𝑭𝒎𝒊𝒏 Range Dimension Objective Function 

0 [−100,100]             30 𝐹1 = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 

0 [−10,10]            30 𝐹2 = ∑ |𝑥𝑖| + ∏ |𝑥𝑖| 
𝑛

𝑖=1

𝑛

𝑖=1
 

0 [−100,100]            30 𝐹3 = ∑ (∑ 𝑥𝑗

𝑖

𝑗−1
)

2𝑛

𝑖=1
 

0 [−100,100]            30 𝐹4 = 𝑚𝑎𝑥𝑖{|𝑥𝑖|. 1 ≤ 𝑖 ≤ 𝑛} 

0 [−5 · 12,5 · 12]            30 𝐹5 = ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 

 
 
Table 2: Comparison outcomes of (POA), (POA_CG1), (POA_CG2), (POA_CG3), and (POA-OOA) 

With number of elements with 30 elements and 1000 iterations. 
Function 
Symbol 

POA             POA-CG1 POA-CG2 POA-CG3        POA-OOA 

F1 9.519e-214 3.3291e-276 1.1077e-248 1.3511e-241             0 

F2  3.8025e-107 4.8304e-134 3.0162e-126 2.9611e-127             0 

F3 1.0699e-212 3.0603e-262 6.2607e-237 4.6242e-245             0 

F4 1.3981e-108 1.5868e-133 2.387e-120 2.8769e-118        0 

F5 28.7066 28.3332 28.3715 27.2486         0 

 
The results shown in Table 2 the table were obtained by repeating each algorithm 10 times and 
then calculating the final average for each algorithm in order to improve the reliability of the 
results, and to reduce the influence of randomness and individual abnormal and unnatural 
cases. This is shown in the figures 1-5. 
 
 
 
 
  
 
 

 
 

  
 
 
 

Fig 1. Function graph for F1 

 

  

Fig 2. Function graph for F2 
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      The original POA algorithm shown in the graphs shows relatively slow convergence 
performance starting from a high starting value that slowly decreases making it less efficient 
than the hybrid algorithms. The faster convergence rate of POA-CG1 allows for higher quality 
solutions to be obtained more efficiently. Instead, POA-CG2 performs well in steady 
convergence which is somewhat slower than the rest of the algorithms but more consistent and 
stable. Conversely, POA-CG3 also resembles CG1 with good relative convergence speed and 
sometimes reaches the minimum faster than CG2. The hybrid algorithm POA-OOA dominates, 
as it is the fastest in converging to the optimal solution. This means that it is best used for 
solving problems that depend on accurate and fast minima. Therefore, POA-OOA is the most 
suitable while the rest include POA-CG1 and POA-CG3 which are very robust, however CG2 is 
better in terms of relative stability. The POA-CG optimization improves the convergence speed 
in the initial stages of the search by entering the initial community of the POA algorithm, which 
helps to efficiently guide the search towards the optimal solutions and reduces the number of 
iterations. While the hybrid POA-OOA improves the accuracy of the solutions by balancing 
exploration and exploitation, outperforming traditional methods such as PSO and GA in solving 

 
Fig 3. Function graph for F3 

 

 

Fig 5. Function graph for F5 

 

 
 Fig 4. Function graph for F4 
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complex problems, combining wide coverage of the search space (POA) and focused search 
(OOA). 
 
Conclusions 
      In this study, a new optimization algorithm based on a hybrid process of a new algorithm, 
the (POA-OOA) algorithm, was presented. The main inspiration for the proposed algorithm is 
to integrate the strategy and behavior of pelicans during hunting, these behaviors are diving 
towards their prey and moving their wings on the water surface, The (OOA) is inspired by the 
way ospreys catch fish. These different steps of the two algorithms were described through the 
exploration and exploitation stages as a mathematical model for use in the field of optimization 
for pelicans. In addition to the optimization method by integrating the proposed new CG 
algorithm with the (POA) algorithm, these algorithms were implemented through the MATLAB 
R2021a program. The results we obtained in optimizing the results of single-mode functions 
clearly showed the superiority of the hybrid algorithm (POA-OOA) over both the original 
algorithm (POA) by reaching the optimal solution. It also outperformed the proposed 
algorithms (POA-CG1), (POA-CG2), (POA-CG3) and slightly outperformed the original 
algorithm. These results demonstrated the ability to address design optimization problems in 
many fields in faster, more accurate and less costly ways. 
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 خوارزميات هجينة متطورة: تحسين بيليكان باستخدام تقنيات التدرج المترافق والعقاب  

 ر زكي عبد الله *، بان أحمد اأزه
 قسم الرياضيات، كلية علوم الحاسوب والرياضيات، جامعة الموصل 

 معلومات البحث:   الخلاصة: 
مشاكل التحسين المعقدة. لديها قدرة استكشاف مميزة، ولكن لديها بعض المشاكل 

من  في إيجاد الحل بدقة وسرعة من خلال أسلوب الاستغلال. لذلك، تم تحسين

لخوارزمية أولي  كمجتمع  تضمينها  تم  والتي  خوارزمية،  استغلال  في   خلال 

  الأصلية. تم تهجين التهجين الأول، مما تسبب في تحسن بسيط مقترنًا بنتائج
، والتي أثبتت قوتها في إيجاد الحل الأمثل  باستخدام أسلوب استغلال خوارزمية

بدقة وسرعة من خلال النتائج، والتي تمت مقارنتها بناءً على مقاييس مهمة مثل  

معدل التقارب وجودة الحل وسرعة التقارب الموضحة من خلال الرسم البياني، 

وتم تقييم الأداء من خلال بعض وظائف الاختبار العالمية. ويمكن استخدام هذا 

لنهج الجديد في العديد من التطبيقات والمجالات العلمية مثل الاقتصاد والهندسة  ا
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