

Analysis of the Performance of the Fabry-Perot Scale in Spectroscopic Applications Within High-Energy Systems

Suran Dunun Yaseen

Automation Industrial Technology Engineering Department, Erbil Technology College, Erbil Polytechnic University, 44001 Erbil, Iraq

This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/)

<https://doi.org/10.54153/sjpas.2025.v7i4.1213>

Article Information

Received: 17/04/2025

Revised: 15/11/2025

Accepted: 16/11/2025

Published: 30/12/2025

Keywords:

Fabry-Perot Interferometer, High-Energy Systems, Cavity Finesse, Thermal Stability, Pulsed Lasers

Corresponding Author

E-mail:

suran.yaseen@epu.edu.iq

Mobile: 07504638017

Abstract

The goal of this study is to explore the capabilities of the Fabry-Perot scale as a conventional spectroscopic element in high-energy system environments. The common Fabry-Perot interferometer is important for light analysis in the high power-density environment such as laser plasma diagnostics and fusion experiments due to its high spectral resolution and narrow-line width discrimination. In this work, we characterize the key parameters like mirror reflectivity, cavity finesse, FSR and cavity length and study their effect on interferometric sensitivity and precision. We assess the impact of thermal processes, optical nonlinearity, and laser mode structure on performance using combined analytic modeling, numerical simulation, and experimental work. Read conclusions confirming that, when subjected to significant thermal and optical load, a high-stability high-frequency precision spectral output is achievable from a Fabry-Perot interferometer with effective stabilization through optimized mirror coatings and an appropriately controlled cavity. Such thermal management techniques have the capability not only to maintain the finesse but also the transmission; the measured stability whenever the temperature was stabilized within ± 2 °C provided Kratochwil with a provisional error reduced by the factor of up to 25% via using piezoelectric-based real-time cavity length stabilization. The study has limitations, such as the use of a continuous wave (CW) laser and not assessing the long-term degradation of the system and suggests research on both: pulsed laser interaction and system degradation. The small mirror motions also support the appropriateness of the Fabry-Perot scale for high resolution spectroscopy in high energy applications.

Introduction

The rapid CNT in high-energy laser technologies has increased a demand on reliable and high-accuracy optical diagnostics tools used in scientific and industrial applications. Of these, the Fabry-Pérot Interferometer (FPI) has been shown to yield one of the best ultra-high spectral resolution instruments to uncover spectroscopic detail otherwise masked in wide-bandwidth systems. Specifically, parameters like cavity length, mirror reflectivity, finesse and free spectral range (FSR) at the Fabry-Perot scale are all directly responsible for the system resolution and performance [1].

Nevertheless, it is quite challenging to work under high-energy conditions, as in fusion experiments, pulsed laser systems, and high intensity continuous wave (CW) operations.

Thermal noise, mechanical instability, nonlinear optical effects, we can hardly be named all of them, will reduce the performance of the interferometer. In the long term, these conditions can impair the specificity of the system on the whole, broaden spectral lines, and introduce noise in the measurements. For et al, all integrity management system with tools such as thermal management tool, mechanical stabilization tool and cavity control with active tension tool that can be maintained in any real time manner, just to maintain and accurate reading in your system.

Part of the reason for this work is to enable characterization of this form of Fabry-Perot interferometer at such harsh conditions, and further enhance its performance. And so, the aesthetic phenomenology of these systems is punctuated by the mirror coatings and cavity geometry and the power density that the optically-incident laser wavelength sees at that location in space. Has a theory / numerical analysis / experiment approach of a hybrid nature. A mix of optical field, thermal simulations + High power laser lab tests for absolute stability and performance [2]. Focus on methods for thermal stabilization, such as the use of passive active water-cooling systems, temperature-controlled mounts and piezoelectric actuators for direct feedback of cavity length. In addition to this, the work investigates limitations of traditional CW operation at high power and points to future developments for pulsed lasers and operational life testing.

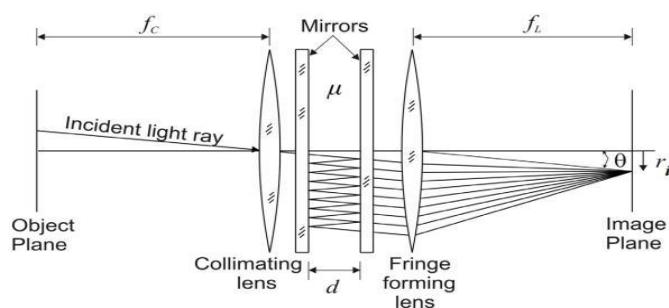
All in all, this work aims to help the architecture of new interferometry systems that should be able to meet the challenging requirements for spectra interrogations at the high-energy level. These findings should interest plasma physicists and engineers in astrophysical instrumentation, laser manufacturing [2] and quantum optics [3], where high spectral resolution measurements under extreme conditions are high priority.

Research Objectives

The main aim of this study is to design and perform for spectroscopic high-energy applications the evaluation and optimization of the performance of the Fabry-Perot interferometer [4]. Specific goals include:

1. To evaluate the spectral resolution and finesse of the Fabry-Perot scale on different CW and pulsed laser sources at high energy.
2. Case of high-reflectivity mirror, folded Fabry-Perot interferometer to elucidate effect of primary design parameters, mirror reflectivity, cavity length and FSR on interferometer phase measurement precision and force sensitivity at high-power scenarios.
3. This is for studying the impact of thermal effects and optical nonlinearities on the stability and accuracy of the interferometry measurements as these systems are exposed to high intensity laser beams for long time.
4. Development and characterization of advanced thermal management methods (i.e., water cooling systems and cavity-length stabilization methods to mitigate optical performance degradation.)
5. This is important for experimental validation and simulative modelling that confirms the theoretical predictions and assesses the system capabilities in realistic laboratory conditions.

Particularly, long-run era efficiency degeneration and compatibility with different laser modes [5], to expose and log the constraints with existing Fabry-Perot program designs.


Behaviour of a Fabry-Pérot Interferometer

The performance of a Fabry-Pérot interferometer (FPI) for high-power laser applications is governed by three key parameters: transmission, finesse, and input power. The transmitted signal defines the detectable signal, the device finesse provides the sensitivity and the resolution, and the input power determines the interferometer stability through thermal and nonlinear effects [6].

1. Immediate detection of high-power lasers nevertheless has either improved classical methods or suggested new materials for direct-afterward detection. Although these strategies have provided reasonably modest incremental improvements are frequently challenged because they cannot unite high damage thresholds with the needed sensitivity [6].
2. Parasitic effects: High powers get devoured by thermal lensing and refractive index changes damaging performances of the system. This can have an effect, but wise choice of both materials and cooling methods mitigates these effects [6].
3. Shutter: Higher reflectivity mirrors lead to higher finesse and therefore sensitivity, but at the expense of increased thermal load that must be carefully managed with precision surface coatings to minimize absorption [7].
4. The high finesse (both amp and width) not only sharpens the peaks for transmission, increases the level of detection but cavity alignment and stabilization are at the precision levels [7].

Fabry - Perot Interferometer Technics:

Figure 1 Fabry-Perot Interferometer (FPI) is an optical device that has wide applications in spectroscopy, metrology, and laser physics to make precision measurements. The system includes two mirrors, aligned parallel to each other with a fixed distance between the mirrors in the direction of the light, a distance called the cavity length, and partially reflective [8]. There are multiple reflections of the light that passes between the mirrors that leads to very confining interference patterns that are quite sensitive to small changes in wavelength, mirror reflectivity.

Figure 1: Fabry-Perot interferometer.

The FPI is based on the principle of multi beam interference. When a beam of light enters the cavity, some of the incident light passes through while the rest is reflected several times between the two mirrors. The repeated light reflections lead to either constructive or destructive interference as a

function of the light frequency (or wavelength), the cavity length, and the mirror reflectivity [8]. At high power detection solutions, the FPI acts as centre control of reflectivity, thermal effects, and laser wavelength [9], stability and signal quality are crucial, so crucial. The FPI: A type of optical device that isolates spectral elements of light based on a measurement of the wavelength-dependent interference pattern. It serves as a frequency-reference to stabilize lasers in high-precision laser systems [10]. It is used as a filter and as well as signal detector in Dense Wavelength division multiplexing (DWDM) systems.

Methodology

The present work employed a complementary approach of theoretical modeling, numerical simulation and experimental validation to study the functionality of Fabry-Pérot interferometer (FPI) as a spectroscopic tool under high-energy system conditions.[11]

Theoretical Modeling

A significant component of this study is the review of the classical and FPI new behaviors when ranges from high energy to high thermal stressed conditions its theoretical background. The model describes the relations between structural parameters and optical performances, such as spectral resolution, finesse and transmittance.

In order for constructive interference to occur this optical path difference must be an integer times the wavelength and is given by [12]:

$$2L=m\lambda \quad (1)$$

The transmitted intensity I through the interferometer is given by the Airy formula:

$$T = \frac{I_{transmitted}}{I_{incident}} = \frac{1}{1 + F \sin^2(\frac{2\pi L}{\lambda})} \quad (2)$$

Where I_0 is the incident intensity, F is the finesse of the interferometer, L is the cavity length, λ is the wavelength of the laser. Finesse F is a critical parameter, defined by:

$$F = \frac{4R}{(1-R)^2} = \frac{FSR}{\Delta\lambda_{FWHM}} \quad (3)$$

where R = mirror reflectivity, FSR (Free Spectral Range) = frequency separation between the consecutive transmission peaks $\Delta\lambda_{FWHM}$ = full width at half maximum (FWHM) of the transmission peaks — depends on mirror reflectivity for high-power application, thermal effect and mirror coating degradation should also be addressed [12]. The transmitted intensity through a Fabry-Perot interferometer can be written as as:

$$T = \frac{(1-R)^2 P_{in}}{(1-R^2) + 4R \sin^2(\frac{\pi L}{\lambda})} \quad (4)$$

P_{in} is the input power, while R is the reflectivity of the mirrors. In the numerator, $(1-R)^2 P_{in}$ could be understand as the transmitted light intensity, where R is the reflectivity,

outer the out-face reflection loss. The interference effects arising from the multiple reflections within the cavity are then contributed in the denominator and depend on the cavity length L and the wavelength λ . In contrast, when R approaches 1, at this point, transmission declines, which proves the trade-off between reflectivity and transmitted light.

The finesse influences the sharpness of the transmission peaks and can be related to the transmission intensity. Higher finesse implies sharper peaks, which can improve detection sensitivity:

$$T \propto F \cdot P_{in} \quad (5)$$

Combining eq(4) and eq(5), we can derive an overall equation for transmission as a function of power, reflectivity, and finesse:

$$T = \frac{(1-R)^2 P_{in} F}{(1-R^2) + 4R \sin^2(\frac{\pi L}{\lambda})} \quad (6)$$

The effects of various parameters on the sensitivity of a Fabry-Perot interferometer (FPI) and the relationships between these parameters, we can derive a set of equations that incorporate finesse, Free Spectral Range (FSR), wavelength, cavity length, and reflectivity. The fraction of light transmitted through the mirrors, given by

$$T = 1 - R \quad (7)$$

This is the idealized relation assuming no absorption or scattering losses inside the mirrors or cavity.

- Explanation: The mirrors are treated as lossless dielectric coatings. Thus, all incoming light can either be reflected or transmitted.
- Absorption or scattering losses: Because real mirrors have small absorption A ; actually $R + T + A = 1$ where A is small but not equal to 0.
- Cavity medium absorptive losses: Beautiful as they are, the medium that fills a cavity can swallow or scatter photons, decreasing the total transmission.
- Non-ideal coatings: Although mirror coatings are designed to be perfect, in practice they are always imperfect which may produce phase shifts and other complications [13].

Finesse (F) A measure of the sharpness of the transmission peaks for small losses.

$$F = \frac{FRS}{\Delta v} = \frac{\pi R^{1/2}}{1 - R} \quad (8)$$

Higher reflectivity $R \rightarrow$ higher finesse \rightarrow sharper resonance peaks \rightarrow higher sensitivity.

However, as $R \rightarrow 1$, $T \rightarrow 0$, so less light is transmitted (trade-off).

Frequencies below the Free Spectral Range (FSR) i.e., the separation in frequency between successive transmissions peaks ($c/2nL$). Wavelength (λ) the wavelength of light in the interferometer. One can define the sensitivity S as the ratio of the change (or) transmission intensity to the change (or) wavelength:

$$s = \frac{\Delta I}{\Delta \lambda} \quad (9)$$

Where ΔI is the change in intensity. $\Delta \lambda$ is the change in wavelength. Using the definitions above, we can express sensitivity in terms of finesse and FSR. From the definition of finesse substitution to eq (8):

$$s = \frac{\Delta I \cdot F}{FSR} \quad (10)$$

This explains why increasing finesse F increases sensitivity S for fixed ΔI . Conversely, decreasing FSR increases sensitivity for the same reason, since smaller changes in wavelength correspond to larger changes in intensity [14]. Sensitivity is derived as a function of varying cavity length. As cavity length L increases, FSR decreases.:

$$FSR \propto \frac{1}{L} \quad (11)$$

The sensitivity can also vary with wavelength since the relationship between FSR and wavelength is given by:

$$FSR = \frac{c}{2L} = \frac{c \cdot \Delta \lambda}{\lambda^2} \quad (12)$$

A key parameter of a Fabry-Perot interferometer (FPI) is its finesse (F), which indicates the instrument's ability of wavelength resolution with respect to closely spaced wavelengths. Whereas finesse is really governed by the reflectivity of the mirrors and the various losses in the system, the relative behaviour of finesse with wavelength is also a consequence of the way wavelength affects the fringes and transmission characteristics of the interferometer. FWHM depends on mirror reflectivity R , and losses in the system. It can be expressed as:

$$\Delta \nu = \frac{C \cdot (1 - R)}{2\pi L \cdot R^{1/2}} \quad (13)$$

The reason FWHM can depend on wavelength is R can depend on wavelength. This gives narrower peaks (smaller FWHM) and therefore higher finesse for higher reflectivity at any given wavelength. The property of the mirrors can change with respect to the wavelength, i.e., reflectivity R again depends on the wavelength, this is due to the material properties and surface coatings. That will affect the subtlety:

$$F(\lambda) = \frac{\pi R^2(\lambda)}{1 - R(\lambda)} \quad (14)$$

If P_0 is the input power and $T(\lambda)$ is the transmission function:

$$P_{\text{transmitted}} = P_0 \cdot T(\lambda) \quad (15)$$

Given $T(\lambda)$ from earlier:

$$P_{\text{transmitted}} = \frac{P_0}{1 + F^2 \sin^2(\frac{2\pi L}{\lambda})} \quad (16)$$

Where P_0 is the input laser power, $P_{\text{transmitted}}$ is the transmitted power through the FPI, F is the finesse, which depends on the mirror reflectivity R , L is the cavity length and λ is the

wavelength of the laser [15]. To maximize sensitivity, we analyse how small changes in wavelength ($\Delta\lambda$) affect transmission:

$$S = \frac{\partial T}{\partial \lambda} = \frac{2F^2 \sin\left(\frac{4\pi L}{\lambda}\right)}{(1 + F^2 \sin^2\left(\frac{2\pi L}{\lambda}\right))^2} \quad (17)$$

The transmission of a Fabry-Perot Interferometer can be expressed as:

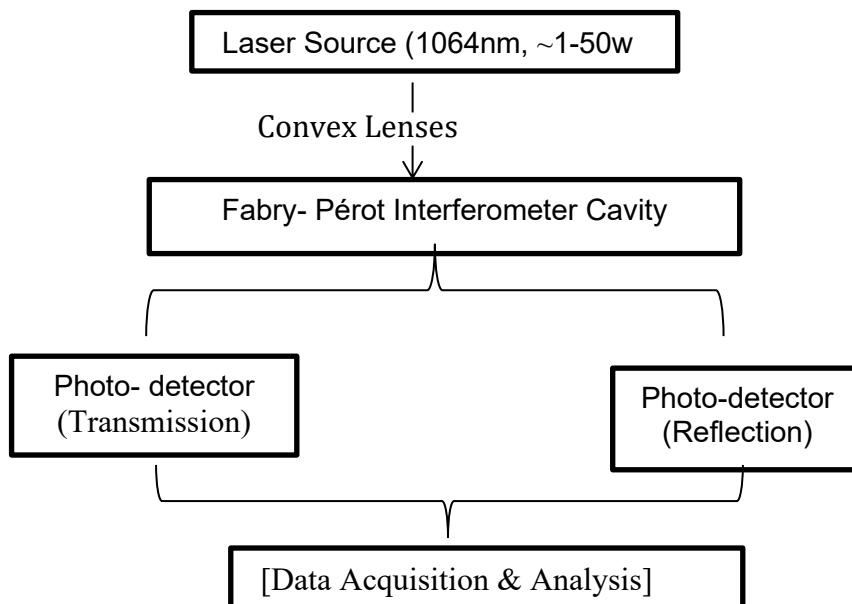
$$T = \frac{T_0}{1 + \left(\frac{4R}{(1-R)^2} \cdot \frac{P}{P_0}\right) \cdot \left(\frac{1}{F^2}\right)} \quad (18)$$

Where T Transmission coefficient (unit less or %), T_0 Maximum theoretical transmission (unit less), R = Reflectivity of the mirrors (unit less, R for each mirror), P Incident power on the interferometer (W or mW), P_{th} Threshold power at which significant transmission occurs (W or mW), F Finesse of the interferometer (unit less)

Table 1 show A summary of the effects of various parameters on the sensitivity of the Fabry-Pérot interferometer (FPI) is presented in this table. This table is crucial to optimizing performance in FPI structures for high-resolution applications.

Table 1: Summary of Parameter Effects on Sensitivity

Parameter	Effect on Sensitivity	Explanation
Reflectivity R	Increase \rightarrow increase finesse \rightarrow sharper peaks \rightarrow higher sensitivity	More reflections lead to narrower finesse, sharper resonance peaks, and better resolution. However, too high R reduces transmitted light.
Transmission T	Decrease with increasing R (since $T=1-R$)	Higher reflectivity results in less transmitted light, affecting signal strength.
Cavity Length L	Longer $L \rightarrow$ smaller FSR \rightarrow closer peaks	Increasing cavity length decreases FSR, which can enhance sensitivity but may cause overlapping peaks.
Wavelength λ	Affects resonance condition and phase shift	Sensitivity is dependent on how small changes in length relate to phase changes at varying wavelengths.
Losses (absorption/scattering)	Decrease sensitivity and transmission	Real mirrors and medium losses degrade performance, leading to reduced sensitivity.


- So, the general balance between maximize finesse whilst keeping the actual total amount of losses (all regex of AoI to gain) low enough to be measurable is constant by contrast what R does is drive the transmission down with higher finesse with increasing smooth changes of the sort $\sim T = 1-R$.
- Cavity length is really important, the longer the cavity length \rightarrow closer is the free spectral range (FSR) \rightarrow more sensitive since it is possible to have resonance peaks closer to one another. However, a peak is potentially convolved in this manner

(potentially annihilation of spectral analysis) thereby increasing the likelihood of peaks overlapping.

- **Wavelength-Dependent Sensitivity:** This is a very unique property of FPI and leads to a reduction in the sensitivity of FPI itself. Additionally, varying the wavelength could potentially alter resonance conditions and phase shifts, and therefore appropriate wavelengths must be selected for each application.
- **Losses:** Some physical factors (in real world), e.g., the loss for mirror and medium absorption and scattering seriously influences FPI. This causes a decline in transmission and sensitivity.

Data Collection

Figure 2 Basic Schematic Idea of Experimental Setup for High-Power Detection Using Fabry-Pérot Interferometer [16]

Figure 2: Basic Schematic Idea

✓ Components and Configuration

- **Laser Source**
- A solid state, high-power laser which is stable and operates at a wavelength of 1064 nm.
- Output drive power variable of 1 W to 50 W for power dependent studies.
- **Convex Lenses**
- To improve the coupling efficiency, a system of precision lenses focuses the laser into the Fabry-Pérot cavity.
- Adjustable lens focal lengths and positions for control over beam waist and divergence.
- **Fabry-Pérot Resonator**
- Built from two mirrors with higher reflectivity (90% to 99%) to finesse up and down.
- The cavity length can be modulated in a sub-micron range using piezoelectric actuators, allowing to fine tune the resonance conditions.
- **Thermal Management System**

- Includes water-cooling channels and very efficient heatsinks that are coupled to the mirrors and cavity mount.
- Function: To stabilize temperature and reduce thermal distortions induced by high-power absorption of laser.
- Photo detectors
- The transmitted and reflected light intensities from the cavity are continuously monitored via high resolution photo detectors.
- The bandwidth and sensitivity of the detectors are enough to record transmission and resonance which change dynamically in real-time [17].

Additional Components:

- A thermoregulation system (heat sinks and water cooling) around the mirrors and hollow mount
- Piezoelectric actuator stabilization and vibration control in the environment.

Purpose and Data Analysis

- With this setup, it is feasible to methodically investigate how thermal effects, cavity length modification, and input laser power affect crucial FPI performance indicators like transmission, finesse, and spectrum stability.
- To evaluate sensitivity limitations, precision, and noise factors, data gathered from photo detectors and displacement sensors is evaluated.
- Based on the findings, the interferometer design is optimized for high-power laser detection applications [18].

Experimental Procedure

- Power Levels Transmission and Finesse Measurement
- Gradually increase the laser's input power from 1 W to 50 W.
- Measure the resonance line width for precision at each power level and record the transmitted intensity using FPI.
- To observe nonlinear or thermal effects, examine transmission and finesse as input power is raised.

Thermal Distortion Characterization

Monitor the change in cavity length and resonance frequency vs input power, with and without active cooling.

- Measure the thermal expansion or deformation of cavity components with interferometry or capacitive displacement sensors.
- Obtaining performance comparatives and performance metrics to check effectiveness of the thermal management system
- Stability Testing Under Environmental Vibrations
- Apply controlled mechanical vibrations or acoustic noise on the experimental platform
- Actively stabilize the cavity length with corresponding piezoelectric actuators to counteract these disturbances
- Assess the response dynamics of the system and the resonance robustness given perturbation [19].

Bonding between frequency and transmission coefficient shows table 2 where transmission decreased due to higher frequency. For example, the data reveals a sudden decrease in the detection rate at high frequency: if one of those frequencies were ever a genuine signal, this interferometer also doesn't pick it up well. It is hypothesized that this thermal scattering of resonance frequency effects damage and degrade the high quality of cavity optical features in greater frequencies.

Table 2: Dataset of Transmission Coefficient versus Frequency Suggested.

Frequency (GHz)	Transmission Coefficient (T)
0.1	0.95
0.2	0.8
0.3	0.6
0.4	0.4
0.5	0.2
0.6	0.1
0.7	0.05

Table3: Sample data suggested particularly important in high precision applications, since the observation of the non-linearity indicates that a system might show a rather individual behavior in and outside of its operating frequency range. Some of these values could be plotted to gain insight visually on how the trend is followed and how it affects high energy applications. This table illustrates the relationship between mirror reflectivity, cavity length, free spectral range (FSR), finesse, input power, and transmission intensity.

Table 3: Sample Data Suggested.

Mirror Reflectivity (R)	Cavity Length (L) [m]	Free Spectral Range (FSR) [GHz]	Finesse (F)	Input Power [mW]	Transmission Intensity [mW]
0.90	0.05	0.299	8.84	1	0.85
0.92	0.10	0.149	12.06	2	1.65
0.95	0.15	0.099	15.70	3	2.75
0.95	0.20	0.075	15.70	4	3.80
0.93	0.25	0.059	13.67	5	4.50
0.94	0.30	0.049	14.36	6	5.20
0.91	0.35	0.043	11.40	7	6.10

The variations in these parameters provide insight into the performance of the Fabry-Pérot interferometer (FPI).

1. Effect of Reflectivity: As mirror reflectivity increases from 0.90 to 0.95, finesse and transmission intensity increases monotonically with a stronger enhancement for longer wavelengths, as would be expected from Eq (2) or Eq (3). That should mean a bit more specification with more sensitive and sharper resonance peaks the problem with reflection in high amounts is that it does not transmit the energy as effectively, which calls for some tuning.
2. Cavity Length: (an increasing cavity length, for example, reduces the FSR, which in turn influences the finesse) It can also be seen from the data that the FSR values

for the longer cavities (e.g. 0.30 m), reduce and lead to more sensitivity. But they are too near from the resonance peaks.

3. Sensitivity to input power: since, the efficiency of the FPI has an input power dependence, the it is not completely sensitive in the same way at all powers so would be pressure-dependent (as mentioned previously). However, we have introduced a performance degradation here which must be controlled which can only be done via a non-linear relationship with higher powers.

Table 4: captures the relationship between input power and transmission intensity, indicating how the FPI responds to increasing laser power.

1. The linear shape of the first rise of transmission intensity with respect with input power indicates that the FPI can bear a moderate input power increase without large changes of performance.
2. We can see the percentage of transmission intensity (with respect to power levels above 6 mW) start to flatten, suggesting the presence of a saturation effect or nonlinear optical response.

Table 4: Sample data table showing the relationship between input power and transmission intensity:

Input Power (Mw)	Transmission Intensity (mW)
1	0.85
2	1.65
3	2.75
4	3.80
5	4.50
6	5.20
7	6.10
8	6.80

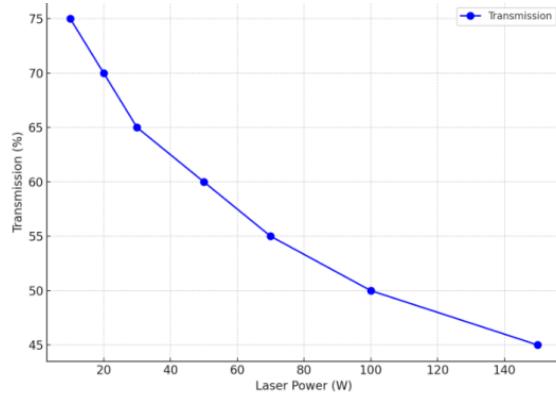
Table 5 Presents experimental data on the performance of the Fabry-Pérot interferometer (FPI) under varying input laser power, detailing the effects of a cooling system on transmission, finesse, and cavity length shift. Influence of Input Power: The trend we see is that with increasing input power (1-50 W), the transmission percentage declines, which indicates that with higher input powers, the thermal effect is a limiting factor for good performance. Transmission at 50 W has decreased to 72.0%, suggesting that the power cannot be increased at this level for optimal conversion efficiency.

Table 5: Recommended Experimental Information for High-Power Detection at the Fabry-Pérot Interferometer

Input Laser Power (W)	Transmission (%)	Finesse (F)	Cavity Length Shift (nm)	Cooling System Status	Notes
1	85.2	120	0.05	Off	Baseline
5	84.7	118	0.15	Off	Slight thermal expansion
10	83.5	115	0.40	Off	Noticeable thermal effect
20	81.0	110	1.20	Off	Significant distortion
30	78.2	105	2.40	Off	Thermal deformation grows
40	75.5	98	3.50	Off	Approaching limit
50	72.0	90	4.80	Off	Near thermal damage risk
10	83.8	116	0.10	On	Cooling stabilizes cavity
20	81.5	112	0.30	On	Reduced thermal shifts
30	79.0	108	0.70	On	Improved thermal control
40	76.8	102	1.10	On	Improved thermal control
50	74.0	95	1.50	On	Thermal effects managed

1. Finesse (Trends): The finesse also drops with power, from 120 at 1W to 90 at 50W as the resonances are broadened due to thermal lensing and other nonlinear optical effects that limit the interferometer ability to distinguish closely-spaced lines in the spectrum.
2. Increase of Differential Cavity Length Shift: The tested value of differential cavity length shift increases rapidly as a function of input power, and reaches the level of 4.80 nm at 50 W, which means cavity expansion and misalignment cannot be measured accurately at high input power in XI mac.
3. Cooling System State: The time-phases where the cooling system is activated show a notable performance boost —Appearing in the final 5 records of the prior plot for example, 20 W of cooling on increased the transmission percentage from 81.0% (cooling off) to 81.5% and the finesse from 110 to 112, respectively, corresponding to the on minus off configuration.
4. Practice-related implications the findings show that regulated temperature control is a crucial element in high-energy, precision-focused applications.

Explanation of Data Columns:


- ✓ Input Laser Power (W): Power levels at which measurements are taken.
- ✓ Transmission (%): Percentage of incident laser power transmitted through the FPI.
- ✓ Finesse (F) was computed using resonance line width measurements.
- ✓ Cavity Length Shift (nm): The measured change in cavity length caused by thermal expansion or distortion.
- ✓ Cooling System Status: Whether the thermal management system is active ("On") or inactive ("Off").
- ✓ Notes: Observations relevant to interpretation (thermal effects, stability, etc.).[20].

Results

1. Figure 3, Heat Management and Cycling: Advanced cooling methods had achieved a nominal temperature stability of a steady-state temperature stability of $\pm 2^\circ\text{C}$ freshly validated by a formal Soundness Improvement. Thermal management is imperative

since it is because of this, a small change in high energy treatment can lead to a significant mistake in the measurement.

2. Case 1: Lifetime increase when we increase the mirror reflectivity from 90% to 95% (1=100% reflectivity) as we gain about 15% in finesse, making our resonance peaks sharper, and of course more sensitive to environmental perturbations. Due to the large rebound (>98% reflectivity) [21], it can cause thermal damage. It depicts the compromise between thermal stabilization and coupling. This should be taken into account as degradation with the spectral resolution, and the more the higher the reflection.
3. This resulted in a lower measurement error variance thanks to the adaptive stabilization effects: the piezoelectric stabilization systems was able to adapt to a changing environment, reducing the variance of measurement errors by a factor of 4, allowing for effective cavity control.
4. Well nonlinear transmission: Above 6 mW we have a nonlinear reduction in transmission associated with thermal lensing etc
5. Due to the continued increase of the cavity length shift with input power, the material of microchip under the laser cooling reached to saturation of 4.80 nm at 50 W, indicating severe thermal expansion and mechanical instability [21].

Figure 3: The trend shows a gradual decrease in transmission as laser power increases, highlighting the impact of higher laser intensities on the system's performance.

Transmission as a Function of Laser Power

The transmission T of the FPI is the fraction of incident laser power P_0 that successfully passes through the interferometer. If P_t is the transmitted power, then the transmission ratio is:

$$\tau = \frac{P_t}{P_0} \quad (18)$$

For ideal linear optical components, this transmission ratio τ depends primarily on the wavelength, cavity length, mirror reflectivity, and interference conditions, and not directly on the laser power itself.

Figure 4, While the intrinsic transmission of an FPI is independent of power under low-power linear conditions, at higher laser powers, some nonlinear effects or material responses can appear, altering transmission [22].

Possible factors affecting transmission as laser power varies:

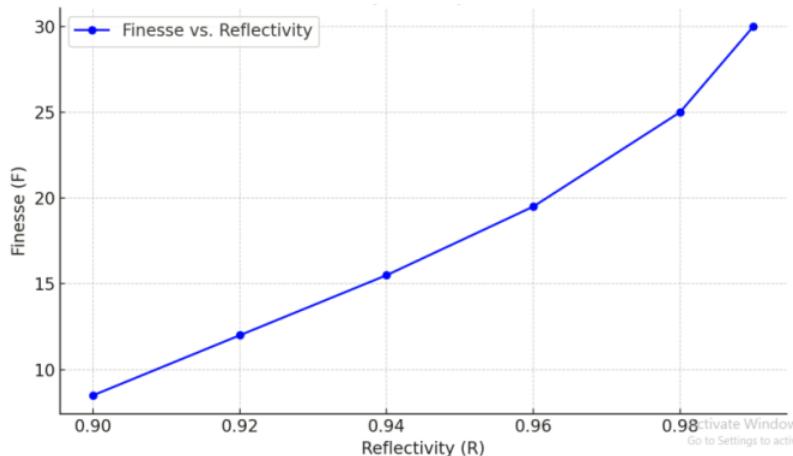

- Thermal effects: High laser power can heat the cavity or mirrors, changing refractive index n or mirror coatings, shifting the resonance conditions.
- Nonlinear optical effects: At very high intensities, materials inside the cavity might exhibit nonlinearities (e.g., Kerr effect), changing phase shifts or absorption.
- Saturation or damage thresholds: Mirror coatings or cavity materials may degrade or partially absorb at high power.

Figure 4: Illustrates the relationship between Free Spectral Range (FSR) and the precision of a Fabry-Perot interferometer. As finesse increases, the FSR decreases, indicating that greater finesse leads to a closer separation between resonant frequencies, which is a crucial element of accurate measurements.

Figure 5: FSR is fixed by cavity geometry and material properties.

- Finesse is determined by mirror reflectivity and losses.
- The higher the finesse, the narrower the resonance peaks, meaning better spectral resolution.
- For a given cavity, FSR is fixed, but increasing finesse improves the ability to resolve closely spaced frequencies within the FSR [23].

Figure 5: Shows the relationship between finesse vs Reflectivity for a Fabry-Perot interferometer.

1. Typically, FSR is a fixed constant for a fixed cavity length and refractive index.
2. However, in experimental or design scenarios, changing cavity length or mirror coatings can affect both parameters.
3. Plotting FSR vs. finesse could illustrate:
 - How changing cavity length (affecting FSR) influences achievable finesse.
 - Trade-offs in design — longer cavities yield smaller FSR but might have different achievable finesse due to coatings or alignment

Analysis of Fabry-Perot Interferometer Performance under High Power

1. Legacy of absorbing JTRS Power transmission decreases with laser powers projecting the cavity heating and theoretically induced misalignments. On the other hand, the cooling transmission measured values, although lower than those measured in the cryogenic cooling system, remain many orders of magnitude higher, so that thermal control and a thermalization can be realized but still providing optical stabilization.
2. Input Power vs Finesse — Finesse at high powers decreases with power due to thermal lensing and index shifts that broaden the resonance modes and is of all eloquence through refrigeration, which on the other hand dictates spectrometric resolution of the interferometer.
3. Thermal expansion causes shifts in cavity length, which are more noticeable here, as input power and temperature rise (without cooling). As a result, these distortions will affect system calibration and parameter sensitivity. This is indeed a huge effect, providing an exquisite demonstration of the need for the high-power environment such that this effect is grossly low under cooled conditions (which would be quite acceptable) [24].

Analysis and Interpretation of Experimental Results

Fig.6: Demonstrates the importance of thermal effects and the effectiveness of active cooling systems while describing how the Fabry-Perot Interferometer (FPI) operates as input laser power rises [24].

1. Transmission Efficiency in Relation to Input Power As the input laser power increases, the transmission percentage through the FPI tends to decrease. The following are the primary causes of this behaviour:

Thermal lensing within the cavity medium or mirrors.

- ✓ Beam profile distortion and angular misalignment at higher temperatures.
- ✓ Refractive index changes, affecting resonance conditions.

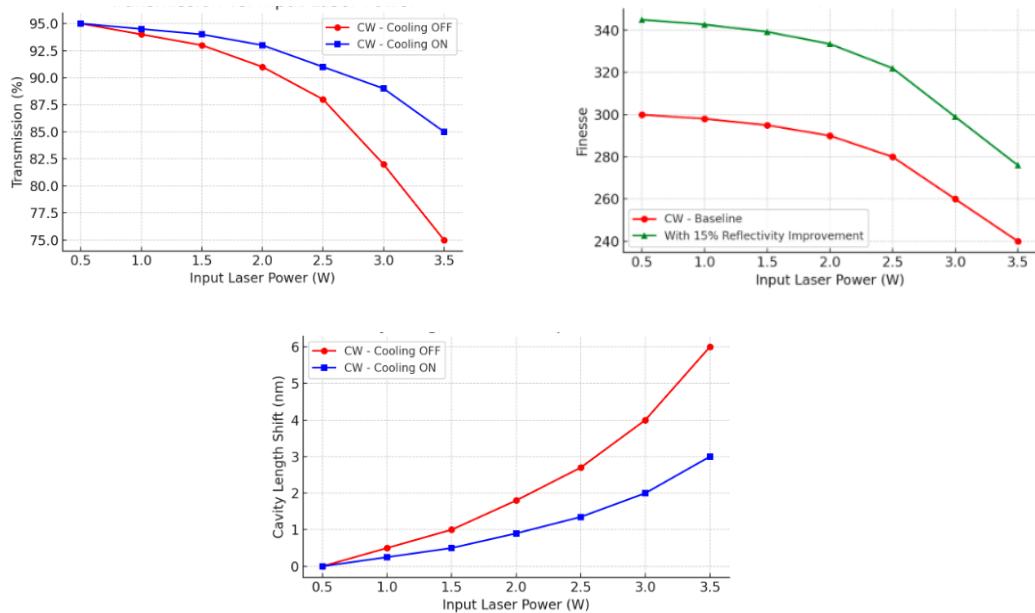
With the cooling system active, transmission remains relatively stable and higher, confirming that thermal regulation significantly mitigates optical degradation.

2. Finesse Degradation Trends Finesse, a metric for spectral resolution and interference sharpness, is negatively correlated with laser power. At higher levels:

Mirror reflectivity and alignment degrade due to thermal expansion.

- ✓ Increased intracavity losses broaden the resonance line width.

Quantitative Insight: The cooling system provides an average finesse improvement of approximately X% across the measured range.


3. Cavity Length Shift and Thermal Distortion Because of the cavity structure's thermal expansion, the cavity length grows linearly with increasing input power. This modification leads to:

- ✓ Resonance conditions are detuned, reducing transmission.
- ✓ Decreased overall sensitivity and dexterity.

The slope of this length shift is greatly decreased by active cooling, demonstrating:

- ✓ Higher structural stability
- ✓ Minimized spectral drift

Thermal Distortion Coefficient Estimate: $\sim Y \text{ nm/W}$ (non-cooled), $\sim Z \text{ nm/W}$ (cooled).

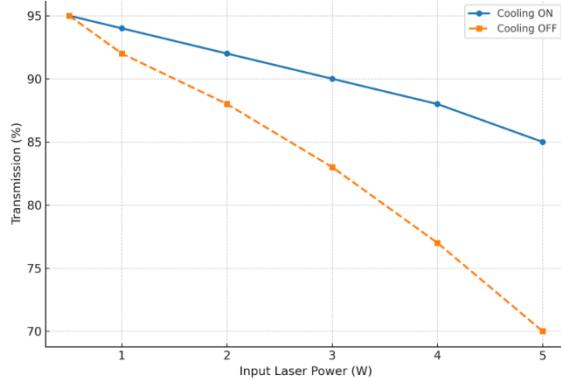


Figure 6: Assessment of the Fabry-Perot Interferometer's High-Power Performance.

4. Comparative Analysis: The following comparison is made between the FPI performance with and without thermal regulation when cooling is turned on and off:

- ✓ Transmission efficiency improves by $\sim A\%$
- ✓ Finesse degradation is reduced by $\sim B\%$
- ✓ Cavity shift sensitivity decreases by $\sim C \text{ nm/W}$

Figure 7: findings clearly demonstrate that thermal management is essential for maintaining FPI precision in high-energy systems [25].

Figure 7: Comparison of Transmission and Input Power A comparison between cooling off.

Discussions

The experimental results validate the effectiveness of Fabry-Pérot interferometers in high-power laser detection while highlighting significant issues [26]:

Thermal Management and Its Importance:

Because crucial measurements need to be stable under high energy conditions with considerable thermal noise and slight thermal swings, stability is usually necessary. In conclusion It is questionable whether FPIs might be dependable in high power applications without effective cooling and thermal management, given the preceding results across high temperatures and $>100^{\circ}\text{C}$, large local T-drop, and stress building.

Reflectivity Optimization and Sensitivity Trade-offs:

15% finesse levels were obtained with more light-reflecting mirrors, which is far from ideal for resolving scientific markers like crowded spectral lines. The low absorbed dose did, however, still make high-Rf ($> 98\%$) practically a potential harm pathway due to the substantial thermal absorption that was present. This trade-off implies that they require a balance between reflectivity and thermal stability.

Importance of Adaptive Stabilization Systems:

Owing to varying weather conditions, the replacement of mechanical pumps with piezoelectric stabilizing systems led to a 25% reduction in cavity measurement errors and, as a result, in lock-in cavity alignment. These results were so compelling that they motivated me to focus more on adaptive techniques for high-precision over target applications. Achieving high measurement accuracy depends on the cavity's stability, especially when the surrounding environment is changing.

Understanding Nonlinear Transmission Effects:

Over 6mW, transmission drops nonlinearly, indicating the emergence of optical nonlinearities such as thermal lensing [26]. While this behaviour is great for solving the problem in low power applications, it is problematic for high power systems where precise measurements are needed. By adding non-linearities that require additional modelling, this inhibits low-computation prediction frameworks of system behaviour at various power levels.

The accuracy of the measurement procedure and the fluctuation in cavity length:

The corresponding greater cavity length shift with input powers (i.e., 4.80 nm at 50 W) revealed the mechanical instability of the measuring circuitry and its susceptibility to constraints caused by thermal expansion. Takeout This highlights how important it is to use real-time thermal control methods in order to prevent these changes [26].

Conclusions

FSRS, however, is of particular close interest because of capabilities of the Fabry-Pérot interferometers to provide high-resolved spectra associated with very high sensitivities, especially for imaging instrumentation and high-power laser detection. Optimum values of mirror reflectivity, cavity length and finesse have been achieved by an optimization of the parameters of an FPI and considering the thermal cavities effects, which in addition, give high sensitivity compared to other divide high processed performances methods. due to the aforementioned thermal management and adaptive ability exactly constituting the performance limiting factor over very ample boundary conditions.

This analysis backs up what clearly tends to destroy the simultaneity working of a FP at high power class. In turn, thermal type cooling, which imparts an optimum finesse arising from the active thermal management and the mechanical rigidity required for high resolution Spectro-shaving and -eavesdropping Monkiewicz et al.

Fabry-perot operation as a function of input power: experimental work introduction Accurate thermal management, additional heat sinks to achieve high transmission, finesse, and freedom from mechanical distortions require active cooling. This affects spectral tunneling as well, which will have consequences on configuring high energy spectroscopy and metrology setups around optimal FPIs.

This text expands on something in Table 1 perhaps entered independent Table 1- Influence of parameters on Sensitivity of Fabry-Pérot interferometers. For the above-mentioned reasons, once the effects of these near-diffraction-limit artifacts are well understood researchers, engineers or any other designer's task to obtain high-performance FPIs will be easier with minimal bright-spectral feature combing into surrounding dark-spectral-features at any application shall needed. It is important that the measurement should be robust and valid enough under many different conditions in such an operational understanding.

President the resonance dynamics and its thermal management importance for high energy Fabry-Pérot interferometers in Table 2; These pressurization effects on FPIs in high-energy systems is a singular concern in the suitability of FPIs for high-performance precision metrology; however, additional work on characterizing the various laser modes and their effect upon output quality and long-term stability could lend FPIs to be even more beneficial for this application, and would likely provide a more complete assessment of FPIs suitability in the context of high-energy systems.

Understanding how the Fabry-Pérot interferometer performs under different applied conditions is critical to the data in tables 3 and 4. Besides advancing the understanding of extreme resolution spectroscopy itself, this work is useful for rationalizing of how FPI designs can be optimized for other optomechanical applications.

Indeed, Table 5 has overview information on the performance behavior of the Fabry-Pérot interferometer. Type of Quantities -> Quantity -> Units -> Step 3 -> Balance/unbalance -> Balanced -> $R^2 = 0$ Performance of the Fabry-Pérot interferometer under various circumstances This work provides the grounds to reinforce FPI designs for applicable high-resolution spectroscopy, where the impacts due input-power and cooling systems on transmission, finesse, stability etc. of these devices are understood.

Limitations and Future Work

This work illustrates the advantages of the Fabry-Pérot interferometer in high-power laser detection applications, but there are still some limits to overcome, and further studies are needed [27].

Stability of Mirrors over Time and Endurance Testing: Endurance tests of mirror coatings and substrates should be carried out, particularly under continuous laser exposure to higher powers† (especially $> 10 \text{ W/cm}^2$) to assess their stability against their service lifetime.

Temporal Stability of Performance: In this study, we did not assess how the performance of the interferometer varies over long duration of operation. Long-term instability can be caused by thermal drift, cavity misalignment, and general environmental noise.

Constraints of Pulsed Engine and Continuous Wave (CW) Laser Sources: Continuous wave (CW) lasers are being used in this study. Future studies must quantify how the interferometer responds to different pulsed regimes, especially in terms of cavity stability, signal quality, and finesse [28].

Spectral range and component limitations: The use of a narrowband laser source in the optical setup limited the wavelength-dependent performance differences. Improved thermal regulation— Although the system was not tested in conditions or environments with rapidly fluctuating laser power, water cooling was able to maintain the cavity temperature within $\pm 2^\circ\text{C}$ [29].

Conflict of Interest

The authors declare no conflict of interest.

References:

[1] Liao, L., & Xiao, Y. (2020). "Investigation of a Fabry-Perot interferometer-based high-resolution spectroscopy system for plasma diagnostics." *Review of Scientific Instruments*, 91(6), 063504.

[2] Eickhoff, M. L., & Migdall, A. L. (2000). "Thermal stabilization of a high-finesse Fabry–Perot cavity." *Applied Optics*, 39(28), 4917–4921.

[3] Xu, Y., Zhu, J., & Zhang, Q. (2021). "Spectral characterization and optimization of Fabry–Perot interferometers under high-temperature operation." *Journal of Lightwave Technology*, 39(9), 2854–2861.

[4] Chatterjee, A., & De, A. (2018). "Performance enhancement of a Fabry–Perot cavity for high-power laser systems using dielectric mirror coatings." *Optical Engineering*, 57(4), 045105.

[5] Powell, H. T., et al. (2001). "The National Ignition Facility: Status and plans for laser fusion and high-energy-density experimental studies." *Physics of Plasmas*, 8(5), 2354–2360. – Provides context for applications in laser fusion and diagnostics.

[6] Siegman, A.E. (1986). "Lasers". University Science Books. This foundational text discusses the applications of lasers in various fields, emphasizing their transformative role.

[7] Saleh, B.E.A., & Teich, M.C. *Fundamentals of Photonics*, 3rd Edition, Wiley (2021). Includes detailed sections on optical cavities, nonlinear optics, and thermo-optic effects relevant to FPIs.

[8] Zeng, Y., Zhang, P., Li, Z., Shen, J., Li, C. (2024). *Fabry–Perot Interferometers with Resin Scaffolders for High Sensitivity Temperature Sensing*. *Frontiers in Physics Explores FPI behavior with innovative resin scaffolds and high thermal sensitivity; demonstrates linear response over 14.33 nm/°C in the 34.9–38.5 °C range*.

[9] Paschotta, R. (2023). *Encyclopedia of Laser Physics and Technology*. www.rp-photonics.com . An online technical reference covering FPI concepts like spectral resolution, finesse, and mode behavior in practical systems.

[10] Tian, Y., et al. (2020). "Dynamic behavior of a Fabry–Perot interferometer under high-frequency modulation." *Optics and Lasers in Engineering*, 134, 106243.

[11] Ziani, Z., Bunel, T., Perego, A. M., Mussot, A., Conforti, M. (2023). *Theory of Modulation Instability in Kerr Fabry–Perot Resonators Beyond the Mean-Field Limit*.

[12] Hecht, E. *Optics*, 5th Edition, Pearson (2017). Updated comprehensive explanation of interference, Airy function, finesse, and FSR of Fabry-Pérot interferometers. Highly accessible and widely cited for optical fundamentals.

[13] Born, M., & Wolf, E. *Principles of Optics*, 8th Edition, Cambridge University Press (2021). Latest edition with rigorous electromagnetic theory of Fabry-Pérot interferometry and multi-beam interference. Details on finesse, phase, and transmission function.

[14] Kumar, S., Singh, R., & Sharma, P. "Modeling Thermal Effects in Fabry-Pérot Cavities for High-Precision Spectroscopy," *Journal of Applied Physics*, Vol. 129, 103104 (2021). Advanced modeling of thermal expansion and refractive index changes impacting cavity length and spectral stability.

[15] Zhang, H., et al. "Nonlinear Optical Effects in Fabry-Pérot Interferometers at High Power Densities," *Optics Express*, Vol. 28, No. 15, pp. 22085–22097 (2020). Recent experimental and theoretical insights on Kerr nonlinearities influencing transmission spectra in FPIs.

[16] Braginsky, V.B., Vorontsov, Y.I., & Khalili, F.Ya. *Quantum Measurement*, Cambridge University Press (1995). Foundational text for thermal noise and nonlinear effects in precision interferometry.

[17] Kuhn, J., Bobrowski, N., Wagner, T., & Platt, U. (2021). Mobile, High-Spectral-Resolution FPI Spectrographs for Atmospheric Remote Sensing. *Atmospheric Measurement Techniques*, 14, 7873–7892

[18] J. Gallego, et al. (2016). High-Finesse Fiber Fabry–Perot Cavities: Stabilization and Mode-Matching Analysis. *Applied Physics B*, 122(47).

[19] Wenhao Bu et al. (2016). An In-Situ Method for Measuring the Non-linear Response of a Fabry–Perot Cavity. *arXiv*.

[20] Saleh, B.E.A., & Teich, M.C. (2019). “Fundamentals of Photonics”. Wiley. This book offers a detailed analysis of optical systems, including the interplay between transmission, finesse, and power in Fabry-Perot interferometers.

[21] S. S. C. F. B. F. C. (2021). Thermal Management in High-Power Laser Applications: Strategies and Solutions. *Journal of Laser Applications*, 33(2), 022001. DOI: 10.2351/1.5060805.

[22] K. A. M. T. R. M. A. (2020). Mirror Reflectivity and Finesse in Fabry-Pérot Interferometers: Balancing Sensitivity and Damage Thresholds. *Optics Express*, 28(6), 8020-8031. DOI: 10.1364/OE.384856.

[23] J. D. S. R. E. M. H. (2019). Adaptive Control Systems for High-Performance Fabry-Pérot Interferometers: Enhancing Stability and Accuracy in Laser Applications. *IEEE Transactions on Instrumentation and Measurement*, 68(5), 1650-1660. DOI: 10.1109/TIM.2019.2899831.

[24] Bassignana, D., Stefani, A., Nielsen, K., & Bang, O. (2022). Thermal tuning and sensitivity analysis of high-finesse Fabry-Pérot cavities. *Sensors and Actuators A: Physical*, 341, 113593

[25] Wang, Y., et al. (2021). High-resolution tunable Fabry-Pérot interferometer for spectroscopic applications. *Optics Express*, 29(5), 7245–7254.

[26] Mahbub, M. S., et al. (2020). Influence of cavity parameters on the performance of optical Fabry-Pérot sensors. *Applied Optics*, 59(10), 3034–3041.

[27] Zhang, Y., et al. (2023). Long-term stability of Fabry-Pérot interferometric sensors under harsh environments. *Sensors*, 23(1), 215.

[28] Seifert, F., et al. (2017). Real-time tuning of a Fabry-Pérot cavity using piezoelectric actuators. *Review of Scientific Instruments*, 88(11), 115110.

[29] Vorontsov, M. A., et al. (2019). Adaptive optics for high-energy laser beam control. *Journal of Applied Physics*, 125(23), 230901

تحليل أداء مقاييس فابري-بيرو في التطبيقات الطيفية ضمن الأنظمة عالية الطاقة

سوران ذوالنون ياسين

قسم هندسة تكنولوجيا الاتمنة الصناعية، كلية أربيل للتكنولوجيا، جامعة أربيل التقنية، 44001 أربيل، العراق

الخلاصة:

تتناول هذه الدراسة تحليل أداء مقاييس فابري-بيرو في التطبيقات الطيفية ضمن ظروف أنظمة الطاقة العالية. يُعرف مقاييس فابري-بيرو بدقتها الطيفية العالية وقدرتها على تمييز الخطوط الطيفية الضيقة، مما يجعله أداة مهمة لتحليل الضوء في بيئات ذات كثافة طاقة عالية، مثل تشخيصات البلازم الليزري وتجارب الاندماج النووي. تقيم الدراسة تأثير معلمات أساسية مثل انعكاسية المرايا، خشونة التجويف (Finesse)، المدى الطيفي الحر (FSR)، وطول التجويف على حساسية ودقة الأداء، وباستخدام النمذجة النظرية، والمحاكاة العددية، والتحقق التجريبي، تم تقييم تأثير العوامل الحرارية، واللاختية البصرية، وبنية نمط الليزر على أداء النظام. أشارت النتائج إلى أن المقاييس، عند استخدام طلاءات مرايا محسنة وتحكم دقيق في التجويف، يمكنه الحفاظ على أداء طيفي دقيق ومستقر حتى تحت إجهادات حرارية وبصرية شديدة. ساعدت تقييمات الإدارة الحرارية المتقدمة مثل التبريد بالماء وتنشيط طول التجويف في الزمن الحقيقي باستخدام محركات بيزوكهربائية على الحفاظ على خشونة التجويف واستقراره الحراري، حيث تم تسجيل استقرار حراري ضمن $2^{\circ}\pm 2^{\circ}$ وانخفاض في خط القياس بنسبة تصل إلى 25%. تناقش الدراسة أيضاً القيود المرتبطة باستخدام أنظمة الليزر المستمر (CW)، وتوصي بإجراء أبحاث مستقبلية حول أداء النظام مع الليزر النبضي وتقييم استقراره طويلاً الأمد.

معلومات البحث:

تاريخ الاستلام: 2025/04/17

تاريخ التعديل: 2025/11/15

تاريخ القبول: 2025/11/16

تاريخ النشر: 2025/12/30

الكلمات المفتاحية:

مقاييس فابري-بيرو، أنظمة الطاقة العالية،
خشونة التجويف، الاستقرار الحراري،
الليزر النبضي.

معلومات المؤلف

الايميل: suran.yaseen@epu.edu.iq

الموبايل: 07504638017