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This study presents a numerical solution to the generalized Fisher 
equation (GFE) using two finite- difference numerical methods: the 
explicit method and the Crank-Nicholson method. The convergence for 
each method was analysed theoretically and experimentally, while 
examining the effect of the parameters δ on the system dynamics. The 
results showed that increasing δ leads to faster solution evolution and 
higher solution values. The explicit method was also computationally 
more efficient, while the Crank-Nicholson method outperformed the 
GFE in accuracy and stability. Using small time and spatial steps 
significantly improved the accuracy of the results. The results were 
validated through various numerical examples using MATLAB R2022a, 
confirming the effectiveness of both methods in modeling the complex 
phenomena described by the equation. 
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Introduction 

The Fisher equation (FE) is not only mathematical formula; it is a powerful tool for 

understanding the interactions between temporal and spatial variations in natural and 

artificial systems [1]. It remains one of fundamental models that contains to motivate 

scientific and mathematical research, making it key topic in applied mathematics modelling 

[2]. The generalized Fisher equation (GFE) is a fundamental model in study of gene diffusion, 

chemical reactions, and heat transfer, making improving its numerical solution of great value 

in these fields [3]. 

FE, introduced by Ronald in 1937, has been generalized. The GFE is development of the 

basic equation and has been extended in various ways to model more complex phenomena in 

fields such as biology, and physics. This equation expresses the interaction between diffusion 

and non-linear growth, making it powerful tool for studying processes involving propagating 

waves [2]. 

The generalised Fisher equation is a second order parabolic semilinear partial differential 

equation: 

http://creativecommons.org/licenses/by/4.0/
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𝜕𝑢

𝜕𝑡
− 𝐷

𝜕2𝑢

𝜕𝑥2
= 𝛽𝑢(1 − 𝑢𝛿),                                                                                                           (1) 

At δ > 0, thus, when δ = 0, reduces to traditional FE.  Which also known as Fisher-KPP 
equation or KPP-Fisher equation or Fisher-Kolomogrov-Petrovsky-Piskunov equation or KPP 
equation 

𝜕𝑢

𝜕𝑡
− 𝐷

𝜕2𝑢

𝜕𝑥2
= 𝛽𝑢(1 − 𝑢).                                                                                                             (2) 

The generalised Burger-Fisher equation (3) is well-known model of convection-diffusion-

reaction equations  

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢𝛿

𝜕𝑢

𝜕𝑥
− 𝐷

𝜕2𝑢

𝜕𝑥2
= 𝛽𝑢(1 − 𝑢𝛿  ).                                                                                      (3) 

thus, when β = 0, reduces to generalised Burger’s equation. 

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢𝛿

𝜕𝑢

𝜕𝑥
− 𝐷

𝜕2𝑢

𝜕𝑥2
= 0.                                                                                                           (4) 

when δ = 1 in (4), we have the famous Burger’s equation 

𝜕𝑢

𝜕𝑡
+ 𝛼𝑢

𝜕𝑢

𝜕𝑥
− 𝐷

𝜕2𝑢

𝜕𝑥2
= 0.                                                                                                             (5) 

 

Many studies presented related to GFE, as analytical and numerical solution of GFE are 

discussed using symmetry methods and mathematical analysis to study the properties of 

propagating waves [1]. Kundu studies traveling wave solutions, the Painlevé analysis of the 

generalised Fisher equation, and the Lotka–Volterra diffusion model [2]. Zhong presents the 

higher-order Haar wave diagram with the Runge–Kutta method to solve the generalised 

Burgers–Fisher and Burgers–Huxley equations [3]. Exact traveling wave solutions of the 

generalised Fisher equation are also explored using analytical techniques, with a focus on 

physical and biological applications [4]. Drábek and M. Zahradníková studied propagating 

waves in the generalised Fisher–Kolmogorov equation with discontinuous density-dependent 

diffusion, highlighting the effect of non-uniform variations [5]. Abd-Elhameed et al. used a 

new linear formulation based on non-symmetric Jacobi polynomials for numerical treatment 

of the nonlinear Fisher equation, which improves numerical solution techniques [6], also they 

provided a generalisation of Djeumen Tchaho formulas for analytical solutions and developed 

new wavelet solutions for the generalised Fisher equation, which enhances the understanding 

of its dynamic behavior [7], and Yadav Singh developed the Elzaki variational iteration 

method for solving the generalised time-fraction Burgers–Fisher equation in porous media 

flow modelling, which contributes to nonlinear transport analysis [8]. The authors in [11-19] 

used finite difference methods for solving Fisher and Huxley equations and they studied the 

stability of the Burger’s equation. 

The importance of this research lies in providing a numerical solution to GFE and 

analyzing the convergence of the explicit and Crank methods, which contributes to 

understanding their performance and determining the optimal conditions for their use. It also 

studies the effect of the parameter δ on the dynamics of the solution, providing valuable 

insights for practical applications. 

In this paper, we consider solving the generalised Fisher equation numerically using the 

explicit (forward) Euler method and the Crank-Nicholson method. Also, the convergence 

(error) analysis of both schemes is examined. The paper is organised as following: section 1 is 

a general introduction and literature review about the generalised Fisher equation. In section 



226 
 

2, we present the numerical schemes and the convergence analysis is investigated in section 

3. The conclusions are given in section 4. 

The Explicit Euler and Crank Nicholson Schemes 

The explicit method is a finite difference method used to numerically solve partial 
differential equations, particularly, the time-dependent problems such as the heat equation 
and the diffusion equation. It relies on estimating the value of a function at a future time step 
using its values at the current time step, without the need to solve a system of linear 
equations [7]. The explicit method is easy to implement, does not require solving systems of 
linear equations, and is highly computationally efficient when using small time steps [9]. To 

derive the explicit method of the generalised Fisher equation, the time derivative 
∂u

∂t
 at tj is 

approximated by the forward difference approximation 
 𝜕𝑢

𝜕𝑡
=

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
 ,                                                                                                                 (6) 

 

and the spatial second derivative is approximate using the central difference approximation 
 𝜕2𝑢

𝜕𝑥2
=

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

∆𝑥2
. 

                

(7) 

Then substituting the finite difference approximations (6) and (7) in the generalised Fisher 
equation (1) which results in: 

 𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

∆𝑡
− 𝐷

𝑢𝑖−1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖+1,𝑗

∆𝑥2
= 𝛽𝑢𝑖,𝑗 (1 − (𝑢𝑖,𝑗)

𝛿
).                                                           

(8) 

Rearranging the terms in (8) and solving it for ui,j+1 to have: 

 𝑢𝑖,𝑗+1 = 𝑢𝑖,𝑗 + 𝐷
∆𝑡

∆𝑥2 (𝑢𝑖−1,𝑛 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗) + ∆𝑡𝛽𝑢𝑖,𝑛 (1 − (𝑢𝑖,𝑗)
𝛿

).                                 (9) 

Using r = D
∆t

∆x2, where r represents the parameter which determines the stability of the 

method, then we obtain the explicit scheme of the generalised Fisher equation 
 𝑢𝑖,𝑗+1 = (1 − 2𝑟)𝑢𝑖,𝑗 + 𝑟(𝑢𝑖−1,𝑗 + 𝑢𝑖+1,𝑗) + ∆𝑡𝛽𝑢𝑖,𝑗 (1 − (𝑢𝑖,𝑗)

𝛿
).                        (10) 

      The Crank-Nicholson method is a semi-implicit method for solving partial differential 
equations. It is an improvement over the explicit and implicit methods. It averages the explicit 

and implicit methods to achieve better numerical stability. The Crank-Nicholson method is 
not as strict as the explicit method in time stability and is more accurate than the explicit 
method, as it is a second-order method in time and space, stable and not susceptible to 
numerical instability even at larger time steps. Its drawbacks include the requirement to solve 
a system of linear equations at each time step, which increases computational cost compared 
to the explicit method and can produce numerical oscillations in the solutions if the time and 

space steps are not well controlled [10]. The time derivative 
∂u

∂t
 at tj+1/2 is approximated by 

the central difference approximation 
 𝜕𝑢

𝜕𝑡
=

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

∆𝑡
 ,                                                                                                              (11) 

 

 

and the spatial second derivative is approximate using the average of the central difference 
approximations at times tj and tj+1 

 𝜕2𝑢

𝜕𝑥2
=

𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗

2∆𝑥2
+

𝑢𝑖−1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖+1,𝑗+1

2∆𝑥2
 

                

(12) 

 

Then substituting the finite difference approximations (11) and (12) in the generalised Fisher 
equation (1) and rearranging the terms, we have the Crank-Nicholson scheme for the 
generalised Fisher equation. 
 

 −𝑟𝑢𝑖−1,𝑗+1 + (2 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑟𝑢𝑖−1,𝑗 + (2 − 2𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖+1,𝑗 +

                                                                                ∆𝑡𝛽(𝑢𝑖,𝑗) (1 − (𝑢𝑖,𝑗)
𝛿
).                         (13)                                                                                                   
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The Convergence Analysis 

In this section, we examine and study the error analysis of the numerical solutions of the 
generalised Fisher equation using the explicit Euler and Crank-Nicholson finite difference 
schemes. 

The Convergence Analysis of the Explicit Scheme 
The error is measured by the difference between the exact solution of the partial 

differential equation and the discrete numerical solution. Substituting the exact solution 
u(x, t) in (1), we have 

𝑇𝑖,𝑗 =
𝑢(𝑥𝑖 , 𝑡𝑗+1) − 𝑢(𝑥𝑖 , 𝑡𝑗)

𝑘
− 𝐷

𝑢(𝑥𝑖+1, 𝑡𝑗) − 2𝑢(𝑥𝑖, 𝑡𝑗) + 𝑢(𝑥𝑖−1, 𝑡𝑗)

ℎ2
                                        

− 𝛽𝑢(𝑥𝑖, 𝑡𝑗) (1 − (𝑢(𝑥𝑖, 𝑡𝑗))
𝛿

).                                                                         (14) 

Using Taylor's expansion of the function u(xi, tj+1) about tj as follows 

𝑢(𝑥𝑖, 𝑡𝑗+1) = 𝑢(𝑥𝑖, 𝑡𝑗) + 𝑘𝑢𝑡(𝑥𝑖, 𝑡𝑗) +
𝑘2

2!
𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) +

𝑘3

3!
𝑢𝑡𝑡𝑡(𝑥𝑖, 𝜌𝑗),                                (15) 

where ρj ∈ (tj, tj+1).  Also, using Taylor's expansion of the functions u(xi+1, tj) and u(xi−1, tj) 

about xi, we find 

𝑢(𝑥𝑖+1, 𝑡𝑗) = 𝑢(𝑥𝑖, 𝑡𝑗) + ℎ𝑢𝑥(𝑥𝑖, 𝑡𝑗) +
ℎ2

2!
𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) +

ℎ3

3!
𝑢𝑥𝑥𝑥(𝑥𝑖, 𝑡𝑗) +

ℎ4

4!
𝑢𝑥𝑥𝑥𝑥(𝜉𝑖, 𝑡𝑗),   (16) 

           where 𝜉𝑖 ∈ (𝑥𝑖 , 𝑥𝑖+1), 

𝑢(𝑥𝑖−1, 𝑡𝑗) = 𝑢(𝑥𝑖 , 𝑡𝑗) − ℎ𝑢𝑥(𝑥𝑖, 𝑡𝑗) +
ℎ2

2
𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) −

ℎ3

3!
𝑢𝑥𝑥𝑥(𝑥𝑖, 𝑡𝑗) +

ℎ4

4!
𝑢𝑥𝑥𝑥𝑥(𝜁𝑖, 𝑡𝑗),   (17) 

                where ξi ∈ (xi−1, xi). Substituting (15) in (14), we have 

                             
𝑢(𝑥𝑖, 𝑡𝑗+1) − 𝑢(𝑥𝑖, 𝑡𝑗)

𝑘
=

𝑢(𝑥𝑖, 𝑡𝑗+𝑘) − 𝑢(𝑥𝑖, 𝑡𝑗)

𝑘
                                                      

=
𝑢(𝑥𝑖 , 𝑡𝑗) + 𝑘𝑢𝑡(𝑥𝑖, 𝑡𝑗) +

𝑘2

2 𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) +
𝑘3

3! 𝑢𝑡𝑡𝑡(𝑥𝑖, 𝜌𝑗) − 𝑢(𝑥𝑖 , 𝑡𝑗)

𝑘
                             

=
𝑘𝑢𝑡(𝑥𝑖, 𝑡𝑗) +

𝑘2

2 𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) +
𝑘3

3! 𝑢𝑡𝑡𝑡(𝑥𝑖, 𝜌𝑗)

𝑘
                                                    

= 𝑢𝑡(𝑥𝑖, 𝑡𝑗) +
𝑘

2
𝑢𝑡𝑡(𝑥𝑖, 𝜌𝑗) +

𝑘2

3!
𝑢𝑡𝑡𝑡(𝑥𝑖, 𝜌𝑗).                                                        (18)        

In the same way, substituting (16) and (17) in the second term in (14), we obtain 

                             
𝑢(𝑥𝑖+1, 𝑡𝑗) − 2𝑢(𝑥𝑖 , 𝑡𝑗) + 𝑢(𝑥𝑖−1, 𝑡𝑗)

ℎ2

=
𝑢(𝑥𝑖, 𝑡𝑗) + ℎ𝑢𝑥(𝑥𝑖, 𝑡𝑗) +

ℎ2

2 𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) +
ℎ3

3! 𝑢𝑥𝑥𝑥(𝑥𝑖, 𝑡𝑗) +
ℎ4

4! 𝑢𝑥𝑥𝑥𝑥(𝜉𝑖, 𝑡𝑗)

ℎ2
−

2𝑢(𝑥𝑖 , 𝑡𝑗)

ℎ2

+
𝑢(𝑥𝑖, 𝑡𝑗) − ℎ𝑢𝑥(𝑥𝑖, 𝑡𝑗) +

ℎ2

2 𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) −
ℎ3

3! 𝑢𝑥𝑥𝑥(𝑥𝑖, 𝑡𝑗) +
ℎ4

4! 𝑢𝑥𝑥𝑥𝑥(𝜉𝑖, 𝑡𝑗)

ℎ2

= 𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗)

+
ℎ4

4!
(𝑢𝑥𝑥𝑥𝑥(𝜉𝑖, 𝑡𝑗) + 𝑢𝑥𝑥𝑥𝑥(𝜁𝑖, 𝑡𝑗)).                                                                     (19) 

By substituting (18) and (19) in (14), we have 

𝑇𝑖
𝑛 =

𝑘

2
𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) −

ℎ4

4!
(𝑢𝑥𝑥𝑥𝑥(𝜉𝑖, 𝑡𝑗) + 𝑢𝑥𝑥𝑥𝑥(𝜁𝑖, 𝑡𝑗)) − 𝛽𝑢(𝑥𝑖 , 𝑡𝑗) (1 − (𝑢(𝑥𝑖, 𝑡𝑗))

𝛿
).   (20) 

Continuing with the same approach, we have the equation in the form 

𝑇𝑖
𝑛 =

𝑘

2
𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) −

ℎ

24
𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝑂(𝑘2, ℎ4) 



228 
 

𝑇𝑖
𝑛 = lim

𝑘,ℎ→0
{
𝑘

2
𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) −

ℎ

24
𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝑂(𝑘2, ℎ4)} = 0 

We assume that u(x, t) satisfies the smooth transition condition of the above proof and that 
the diagram is the explicit method of the generalised Fisher equation. Convergent, and we 
have and satisfies the condition 

(1 + 𝐿𝑓)

1 + 2𝑅
𝐸𝑛 + 𝑘 {

𝑘

2
𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) −

ℎ

24
𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝑂(𝑘2, ℎ4)} 

Proof: 

𝑇𝑖
𝑛 =

𝑢(𝑥𝑖, 𝑡𝑗+1) − 𝑢(𝑥𝑖, 𝑡𝑗)

𝑘
−

𝑢(𝑥𝑖+1, 𝑡𝑗+1) − 2𝑢(𝑥𝑖, 𝑡𝑗) + 𝑢(𝑥𝑖−1, 𝑡𝑗+1)

ℎ2
− 𝑓(𝑢)          (19) 

We rephrase the above equation as follows: 

𝑈𝑖
𝑛+1 − 𝑈𝑖

𝑛

𝑘
−

𝑈𝑖+1
𝑛+1 − 2𝑈𝑖

𝑛+1 + 𝑈𝑖−1
𝑛+1

ℎ2
= 𝑓(𝑈𝑖

𝑛)                                                                          (20) 

Subtracting equations (20) and (19), we get: 

                             
𝑢(𝑥𝑖, 𝑡𝑗+1) − 𝑈𝑖

𝑛+1 − 𝑢(𝑥𝑖, 𝑡𝑗) + 𝑈𝑖
𝑛

𝑘

−
𝑢(𝑥𝑖+1, 𝑡𝑗+1) − 𝑈𝑖+1

𝑛+1 − 2𝑢(𝑥𝑖, 𝑡𝑗+1) + 2𝑈𝑖
𝑛+1 + 𝑢(𝑥𝑖−1, 𝑡𝑗+1) − 𝑈𝑖−1

𝑛+1

ℎ2
− 𝑓(𝑢(𝑥, 𝑡))

+ 𝑓(𝑈𝑖
𝑛) 

We substitute ei
n = u(xi, tj) − Ui

n to get: 

𝑇𝑖
𝑛 =

𝑒𝑖
𝑛+1 − 𝑒𝑖

𝑛

𝑘
−

𝑒𝑖+1
𝑛+1 − 2𝑒𝑖

𝑛+1 + 𝑒𝑖−1
𝑛+1

ℎ2
− 𝑓(𝑢(𝑥, 𝑡)) + 𝑓(𝑈𝑖

𝑛) 

Multiply the equation by k 

𝑘𝑇𝑖
𝑛 + 𝑒𝑖

𝑛 − 𝑘[𝑓(𝑢(𝑥, 𝑡)) + 𝑓(𝑈𝑖
𝑛)] = 𝑘

𝑒𝑖+1
𝑛+1 − 2𝑒𝑖

𝑛+1 + 𝑒𝑖−1
𝑛+1

ℎ2
+ 𝑒𝑖

𝑛+1 

Let 𝑟 =
𝑘

ℎ2 

𝑘𝑇𝑖
𝑛 + 𝑒𝑖

𝑛 − 𝑘[𝑓(𝑢(𝑥, 𝑡)) + 𝑓(𝑈𝑖
𝑛)] = 𝑅(𝑒𝑖+1

𝑛+1 + 2𝑒𝑖
𝑛+1 + 𝑒𝑖−1

𝑛+1) + 𝑒𝑖
𝑛+1 

𝑘𝑇𝑖
𝑛 + 𝑒𝑖

𝑛 − 𝑘[𝑓(𝑢(𝑥, 𝑡)) + 𝑓(𝑈𝑖
𝑛)] = 𝑅𝑒𝑖+1

𝑛+1 + 𝑅𝑒𝑖−1
𝑛+1 + (1 + 2𝑅)𝑒𝑖

𝑛+1 

Let En = max{ei
n+1} 

The maximum error at time step n, then taking the maximum error with respect to i on the 
right-hand side of, we arrive at applying the Lipschitz condition to the nonlinear limit, gives: 

|𝑓(𝑢(𝑥, 𝑡)) + 𝑓(𝑈𝑖
𝑛)| ≤ 𝐿𝑓|𝑢(𝑥, 𝑡) − 𝑈𝑖

𝑛| ≤ 𝐿𝑓|𝑒𝑖
𝑛| 

Leads to 

𝑒𝑖
𝑛+1 ≤

(1 + 𝐿𝑓)

1 + 2𝑅
𝐸𝑛 + 𝑘𝑇𝑖

𝑛 

Or taking the maximum with respect to i, and using the theorem above, we get 

𝐸𝑛+1 ≤
(1+𝐿𝑓)

1+2𝑅
𝐸𝑛 + 𝑘 {

𝑘

2
𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) −

ℎ

24
𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝑂(𝑘2, ℎ4)}The Convergence Analysis of the 

Crank-Nicholson Scheme 
        While the convergence condition proof for the Crank-Nicholson method can be derived by 
same way in explicit method. The reduction error is measured by the difference between the 
true partial differential equation and the discrete plot. Substituting the exact solution u(x, t) 
into the differential equation 

𝑇𝑖
𝑛 =

𝑈(𝑥𝑖, 𝑡𝑗+1) − 𝑈(𝑥𝑖, 𝑡𝑗)

𝑘
−

𝑈(𝑥𝑖+1, 𝑡𝑗+1) − 2𝑈(𝑥𝑖, 𝑡𝑗+1) + 𝑈(𝑥𝑖−1, 𝑡𝑗+1)

2ℎ2

−
𝑈(𝑥𝑖+1, 𝑡𝑗) − 2𝑈(𝑥𝑖 , 𝑡𝑗) + 𝑈(𝑥𝑖−1, 𝑡𝑗)

2ℎ2

− 𝛽 [(𝑈𝑖
𝑛 + 𝑈𝑖

𝑛+1) (1 − (𝑈𝑖
𝑛)𝛿 − (𝑈𝑖

𝑛+1)
𝛿

)]                                                (21) 

Using Taylor's expansion of the function u(xi, tj+1) about tn as follows : 

𝑢(𝑥𝑖+1, 𝑡𝑗) = 𝑢(𝑥𝑖 , 𝑡𝑗) + 𝑘𝑢𝑡(𝑥𝑖, 𝑡𝑗) +
𝑘2

2
𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) + 𝑂(𝑘3)                                              (22) 
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where O(k3) represents the derivatives with respect to u of order three and above. Again, 
using Taylor's expansion of the functions u(xi+1, tj) and u(xi−1, tj) about xi, we find : 

𝑢(𝑥𝑖+1, 𝑡𝑗) = 𝑢(𝑥𝑖, 𝑡𝑗) + ℎ𝑢𝑥(𝑥𝑖, 𝑡𝑗) +
ℎ2

2
𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝑂(ℎ3)                                             (23) 

𝑢(𝑥𝑖−1, 𝑡𝑗) = 𝑢(𝑥𝑖, 𝑡𝑗) − ℎ𝑢𝑥(𝑥𝑖, 𝑡𝑗) +
ℎ2

2
𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝑂(ℎ3)                                             (24) 

where O(h3) represents the derivatives with respect to x of the third order and above. We 
substitute the expansion of the above equations into equation (21), which is as follows : 

                            
𝑢(𝑥𝑖, 𝑡𝑗) + 𝑘𝑢𝑡(𝑥𝑖, 𝑡𝑗) +

𝑘2

2 𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) + 𝑂(𝑘3) − 𝑢(𝑥𝑖 , 𝑡𝑗)

𝑘

−
𝑢(𝑥𝑖 , 𝑡𝑗) + 𝑘𝑢𝑡(𝑥𝑖, 𝑡𝑗) +

𝑘2

2
𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) + 𝑂(𝑘3)

2ℎ2
−

2𝑢(𝑥𝑖, 𝑡𝑗+1)

2ℎ2

+
𝑢(𝑥𝑖 , 𝑡𝑗) + 𝑘𝑢𝑡(𝑥𝑖, 𝑡𝑗) +

𝑘2

2 𝑢𝑡𝑡(𝑥𝑖, 𝑡𝑗) + 𝑂(𝑘3)

2ℎ2

−
𝑢(𝑥𝑖 , 𝑡𝑗) + ℎ𝑢𝑥(𝑥𝑖, 𝑡𝑗) +

ℎ2

2
𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝑂(ℎ3)

2ℎ2
−

2𝑢(𝑥𝑖, 𝑡𝑗)

2ℎ2

+
𝑢(𝑥𝑖 , 𝑡𝑗) − ℎ𝑢𝑥(𝑥𝑖, 𝑡𝑗) +

ℎ2

2 𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝑂(ℎ3)

2ℎ2
− 𝛽[(𝑢𝑖

𝑛)(1 − (𝑢𝑖
𝑛)𝛿)] 

Applying the same steps as in the explicit equation and simplifying the similar terms to get the 
following image: 

𝑇𝑖
𝑛 = 𝑢𝑡(𝑥𝑖, 𝑡𝑗) + 𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝛽(𝑢𝑖

𝑛)(1 − (𝑢𝑖
𝑛)𝛿) + O(𝑘2, ℎ2) 

Or taking the maximum with respect to i, and using the same technique as in the explicit 
method, we get 

𝐸𝑛+1 ≤
(1 + 𝐿𝑓)

1 + 2𝑅
𝐸𝑛 + 𝑘{𝑢𝑡(𝑥𝑖, 𝑡𝑗) + 𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗) + 𝛽(𝑢𝑖

𝑛)(1 − (𝑢𝑖
𝑛)𝛿) + 𝑂(𝑘2, ℎ2)}. 

Numerical Examples and Results 

We provide several diverse instance of solving GFE for varying issue parameter values in this 
section. 
Example 1 
Take 𝑥 ∈ [0,1], 𝑡 ∈ [0,0.2], 𝛽 =  𝛿 = 1 by divided [0,1] at 𝑛 = 5, the time interval [0,0.2] is split 

into 𝑚 = 10 sub-intervals with step size 𝑘 = ∆𝑡 =
𝑑−𝑐

𝑚
= 0.02, and the step size on 𝑥-axis ℎ =

𝑏−𝑎

𝑛
= 0.2. 

Table 1: Example 1a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 
𝛽 =  1,ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  1. 

 𝑥1 = 0.2000 𝑥2 = 0.4000 𝑥3 = 0.6000 𝑥4 = 0.8000 𝑥5 = 1.0000 

𝑡1 = 0.0200 0.5344 0.5108 0.4869 0.4628 0.4859 

𝑡2 = 0.0400 0.5392 0.5158 0.4919 0.4678 0.4879 

𝑡3 = 0.0600 0.5440 0.5208 0.4969 0.4727 0.4899 

𝑡4 = 0.0800 0.5487 0.5258 0.5019 0.4777 0.4919 

𝑡5 = 0.1000 0.5535 0.5308 0.5069 0.4827 0.4939 

𝑡6 = 0.1200 0.5582 0.5358 0.5119 0.4877 0.4959 

𝑡7 = 0.1400 0.5629 0.5407 0.5169 0.4927 0.4979 

𝑡8 = 0.1600 0.5676 0.5457 0.5219 0.4977 0.4999 

𝑡9 = 0.1800 0.5722 0.5507 0.5269 0.5027 0.5019 

𝑡10 = 0.2000 0.5769 0.5556 0.5318 0.5077 0.5039 
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Fig.1: Example 1a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, ℎ =  0.2, 

𝑘 =  0.02 and 𝛿 =  1. 
Table 1 shows that the values of the solution gradually increase with increasing time (t) for 
each spatial point (x). The figure indicates that the solution evolves smoothly with time, with a 
slight increase in values at x = 1 compared to the rest of the points, which may indicate 
boundary effects. 

Table 2: Example 1b: The Crank-Nicholson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈
 [0, 0.2], 𝛽 =  1, ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  1. 

 𝑥1 = 0.200 𝑥2 = 0.400 𝑥3 = 0.600 𝑥4 = 0.800 𝑥5 = 1.000 

𝑡1 = 0.0200 0.5344 0.5108 0.4869 0.4628 0.4859 

𝑡2 = 0.0400 0.5392 0.5158 0.4919 0.4678 0.4879 

𝑡3 = 0.0600 0.5440 0.5208 0.4969 0.4727 0.4899 

𝑡4 = 0.0800 0.5487 0.5258 0.5019 0.4777 0.4919 

𝑡5 = 0.1000 0.5535 0.5308 0.5069 0.4827 0.4939 

𝑡6 = 0.1200 0.5582 0.5358 0.5119 0.4877 0.4959 

𝑡7 = 0.1400 0.5629 0.5407 0.5169 0.4927 0.4979 

𝑡8 = 0.1600 0.5676 0.5457 0.5219 0.4977 0.4999 

𝑡9 = 0.1800 0.5722 0.5507 0.5269 0.5027 0.5019 

𝑡10 = 0.2000 0.5769 0.5556 0.5318 0.5077 0.5039 

               
Fig.2: Example 1b: The Crank Nicolson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, 

ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  1. 
Table 2 shows a gradual increase in the solution values with increasing time (t) for each 
spatial point (x). Figure 2 indicates that the solution evolves smoothly with time, with a slight 
increase in values at x = 1 compared to the rest of the points, which may indicate boundary 
effects. The results are almost identical to the explicit scheme, indicating the stability and 
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accuracy of both schemes for these parameters. The figure shows behavior similar to the 
solution, with gradually increasing values over time. 

 

Example 2 

 Take 𝑥 ∈ [0,1], 𝑡 ∈ [0,0.2], 𝛽 = 1, 𝛿 = 2 by divided [0,1] at 𝑛 = 5, the time interval [0,0.2] is 
split into 𝑚 = 10 sub-intervals with step size 𝑘0.02, and the step size on 𝑥-axis ℎ = 0.2. 

Table 3: Example 2a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 
𝛽 =  1, ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  2. 

 𝑥1 = 0.200 𝑥2 = 0.400 𝑥3 = 0.600 𝑥4 = 0.800 𝑥5 = 1.000 

𝑡1 = 0.0200 0.7311 0.7024 0.6720 0.6401 0.6792 

𝑡2 = 0.0400 0.7369 0.7095 0.6794 0.6476 0.6815 

𝑡3 = 0.0600 0.7427 0.7165 0.6867 0.6552 0.6838 

𝑡4 = 0.0800 0.7484 0.7235 0.6939 0.6626 0.6861 

𝑡5 = 0.1000 0.7540 0.7304 0.7011 0.6701 0.6884 

𝑡6 = 0.1200 0.7595 0.7372 0.7083 0.6775 0.6906 

𝑡7 = 0.1400 0.7649 0.7439 0.7153 0.6848 0.6929 

𝑡8 = 0.1600 0.7703 0.7506 0.7223 0.6921 0.6951 

𝑡9 = 0.1800 0.7756 0.7571 0.7292 0.6993 0.6974 

𝑡10 = 0.2000 0.7807 0.7636 0.7360 0.7064 0.6996 

 
Fig.3: Example 2a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, ℎ =  0.2, 

𝑘 =  0.02 and 𝛿 =  2. 
From Table 3, it appears that the values are higher compared to Example 1 due to the increase 
in δ, indicating that δ increases the rate of change of the solution. The figure shows a steeper 
curve, reflecting the effect of δ on the dynamics of the equation. 

Table 4: Example 2b: The Crank-Nicholson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈
 [0, 0.2], 𝛽 =  1, ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  2. 

 𝑥1 = 0.200 𝑥2 = 0.400 𝑥3 = 0.600 𝑥4 = 0.800 𝑥5 = 1.000 

𝑡1 = 0.0200 0.7311 0.7024 0.6720 0.6401 0.6792 

𝑡2 = 0.0400 0.7369 0.7095 0.6794 0.6476 0.6815 

𝑡3 = 0.0600 0.7427 0.7165 0.6867 0.6552 0.6838 

𝑡4 = 0.0800 0.7484 0.7235 0.6939 0.6626 0.6861 

𝑡5 = 0.1000 0.7540 0.7304 0.7011 0.6701 0.6884 

𝑡6 = 0.1200 0.7595 0.7372 0.7083 0.6775 0.6906 

𝑡7 = 0.1400 0.7649 0.7439 0.7153 0.6848 0.6929 

𝑡8 = 0.1600 0.7703 0.7506 0.7223 0.6921 0.6951 

𝑡9 = 0.1800 0.7756 0.7571 0.7292 0.6993 0.6974 

𝑡10 = 0.2000 0.7807 0.7636 0.7360 0.7064 0.6996 
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Fig.4: Example 2b: The Crank-Nicholson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, 

ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  2. 
From Table 4 it is shown that the results values are consistent with the explicit scheme, which 
confirms the accuracy of the two schemes. 
Example 3 

Take 𝑥 ∈ [0,1], 𝑡 ∈ [0,0.2], 𝛽 =, 𝛿 = 3 by divided [0,1] at 𝑛 = 5, the time interval [0,0.2] is split 
into 𝑚 = 10 sub-intervals with step size 𝑘 = 0.02, and the step size on 𝑥-axis ℎ = 0.2. 

Table 5: Example 3a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 
𝛽 =  1, ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  3. 

 𝑥1 = 0.200 𝑥2 = 0.400 𝑥3 = 0.600 𝑥4 = 0.800 𝑥5 = 1.000 

𝑡1 = 0.0200 0.8115 0.7825 0.7506 0.7162 0.7643 

𝑡2 = 0.0400 0.8176 0.7906 0.7593 0.7252 0.7665 

𝑡3 = 0.0600 0.8235 0.7986 0.7678 0.7342 0.7688 

𝑡4 = 0.0800 0.8292 0.8065 0.7762 0.7431 0.7710 

𝑡5 = 0.1000 0.8348 0.8141 0.7845 0.7518 0.7732 

𝑡6 = 0.1200 0.8403 0.8216 0.7926 0.7605 0.7754 

𝑡7 = 0.1400 0.8456 0.8289 0.8006 0.7690 0.7775 

𝑡8 = 0.1600 0.8508 0.8361 0.8084 0.7774 0.7797 

𝑡9 = 0.1800 0.8559 0.8430 0.8160 0.7856 0.7818 

𝑡10 = 0.2000 0.8608 0.8498 0.8234 0.7937 0.7840 

 
Fig.5: Example 3a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, ℎ =  0.2, 

𝑘 =  0.02 and 𝛿 =  3. 
From Table 5, the values are higher than in Example 2, confirming that increasing δ increases 
the solution values. The figure 5 shows a faster evolution of the solution over time. 
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Table 6: Example 3b: The Crank-Nicholson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈
 [0, 0.2], 𝛽 =  1, ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  3. 

 𝑥1 = 0.200 𝑥2 = 0.400 𝑥3 = 0.600 𝑥4 = 0.800 𝑥5 = 1.000 

𝑡1 = 0.0200 0.8115 0.7825 0.7506 0.7162 0.7643 

𝑡2 = 0.0400 0.8176 0.7906 0.7593 0.7252 0.7665 

𝑡3 = 0.0600 0.8235 0.7986 0.7678 0.7342 0.7688 

𝑡4 = 0.0800 0.8292 0.8065 0.7762 0.7431 0.7710 

𝑡5 = 0.1000 0.8348 0.8141 0.7845 0.7518 0.7732 

𝑡6 = 0.1200 0.8403 0.8216 0.7926 0.7605 0.7754 

𝑡7 = 0.1400 0.8456 0.8289 0.8006 0.7690 0.7775 

𝑡8 = 0.1600 0.8508 0.8361 0.8084 0.7774 0.7797 

𝑡9 = 0.1800 0.8559 0.8430 0.8160 0.7856 0.7818 

𝑡10 = 0.2000 0.8608 0.8498 0.8234 0.7937 0.7840 

     

 
Fig.6: Example 3b: The Crank-Nicholson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, 

ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  3. 
The values in the table show a gradual increase with time for each spatial point (x1 to x5). At 
x =  1.0, the values are slightly higher than at other points, which may reflect a boundary 
effect. The curves trend upward steadily, indicating that the solution is stable. The figure 
shows that as x increases, the solution value decreases slightly (except for x = 1.0, where the 
values are higher) and the slope is larger compared to δ = 1 or 2, confirming that increasing δ 
accelerates the system's dynamics. 
Example 4 
Take 𝑥 ∈ [0,1], 𝑡 ∈ [0,0.2], 𝛽 = 1, 𝛿 = 4 by divided [0,1] at 𝑛 = 5, the time interval [0,0.2] is 
split into 𝑚 = 10 sub-intervals with step size 𝑘 = 0.02, and the step size on 𝑥-axis ℎ = 0.2. 

Table 7: Example 4a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 
𝛽 =  1, ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  4. 

 𝑥1 = 0.200 𝑥2 = 0.400 𝑥3 = 0.600 𝑥4 = 0.800 𝑥5 = 1.000 

𝑡1 = 0.0200 0.8550 0.8266 0.7946 0.7591 0.8129 

𝑡2 = 0.0400 0.8611 0.8354 0.8041 0.7692 0.8150 

𝑡3 = 0.0600 0.8669 0.8440 0.8135 0.7792 0.8171 

𝑡4 = 0.0800 0.8725 0.8523 0.8226 0.7891 0.8192 

𝑡5 = 0.1000 0.8780 0.8604 0.8316 0.7987 0.8212 

𝑡6 = 0.1200 0.8833 0.8682 0.8402 0.8082 0.8233 

𝑡7 = 0.1400 0.8884 0.8757 0.8487 0.8175 0.8253 

𝑡8 = 0.1600 0.8933 0.8829 0.8568 0.8265 0.8273 

𝑡9 = 0.1800 0.8980 0.8898 0.8647 0.8353 0.8293 
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𝑡10 = 0.2000 0.9025 0.8964 0.8724 0.8439 0.8313 

 
Fig.7: Example 4a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, ℎ =  0.2, 

𝑘 =  0.02 and 𝛿 =  4. 
From Table 7 the values continue to increase as δ increases. The figure shows a faster 
behavior of the solution, with higher values at x = 1. 

Table 8: Example 4b: The Crank-Nicholson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈
 [0, 0.2],𝛽 =  1, ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  4. 

 𝑥1 = 0.200 𝑥2 = 0.400 𝑥3 = 0.600 𝑥4 = 0.800 𝑥5 = 1.000 

𝑡1 = 0.0200 0.8550 0.8266 0.7946 0.7591 0.8129 

𝑡2 = 0.0400 0.8611 0.8354 0.8041 0.7692 0.8150 

𝑡3 = 0.0600 0.8669 0.8440 0.8135 0.7792 0.8171 

𝑡4 = 0.0800 0.8725 0.8523 0.8226 0.7891 0.8192 

𝑡5 = 0.1000 0.8780 0.8604 0.8316 0.7987 0.8212 

𝑡6 = 0.1200 0.8833 0.8682 0.8402 0.8082 0.8233 

𝑡7 = 0.1400 0.8884 0.8757 0.8487 0.8175 0.8253 

𝑡8 = 0.1600 0.8933 0.8829 0.8568 0.8265 0.8273 

𝑡9 = 0.1800 0.8980 0.8898 0.8647 0.8353 0.8293 

𝑡10 = 0.2000 0.9025 0.8964 0.8724 0.8439     0.8313 

 
Fig.8: Example 4b: The Crank-Nicholson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, 

ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  4. 
The values in the table show the same solutions as those in Table 6, but the solution at x = 1.0 
shows larger jumps, which may be due to the interaction of the terms with the parameter δ. 
Example 5 
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Take 𝑥 ∈ [0,1], 𝑡 ∈ [0,0.2], 𝛽 = 1, 𝛿 = 5 by divided [0,1] at 𝑛 = 5, the time interval [0,0.2] is 
split into 𝑚 = 10 sub-intervals with step size 𝑘 = 0.02, and the step size on 𝑥-axis ℎ = 0.2. 

Table 9: Example 5a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 
𝛽 =  1, ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  5. 

 𝑥1 = 0.200 𝑥2 = 0.400 𝑥3 = 0.600 𝑥4 = 0.800 𝑥5 = 1.000 

𝑡1 = 0.0200 0.8822 0.8547 0.8229 0.7870 0.8445 

𝑡2 = 0.0400 0.8882 0.8640 0.8332 0.7979 0.8465 

𝑡3 = 0.0600 0.8939 0.8730 0.8431 0.8087 0.8485 

𝑡4 = 0.0800 0.8994 0.8816 0.8528 0.8193 0.8504 

𝑡5 = 0.1000 0.9047 0.8898 0.8622 0.8297 0.8524 

𝑡6 = 0.1200 0.9098 0.8977 0.8712 0.8397 0.8543 

𝑡7 = 0.1400 0.9146 0.9052 0.8799 0.8495 0.8562 

𝑡8 = 0.1600 0.9192 0.9123 0.8882 0.8590 0.8581 

𝑡9 = 0.1800 0.9236 0.9190 0.8961 0.8681 0.8599 

𝑡10 = 0.2000 0.9277 0.9253 0.9037 0.8769 0.8618 

                     
Fig.9: Example 5a: The explicit scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, ℎ =  0.2, 

𝑘 =  0.02 and 𝛿 =  5. 
From Table 9 the highest values so far are due to increasing δ. The figure shows a rapid 
evolution of the solution with time. 

 

Table 10: Example 5b: The Crank-Nicholson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈
 [0, 0.2], 𝛽 =  1, ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  5. 

 𝑥1 = 0.200 𝑥2 = 0.400 𝑥3 = 0.600 𝑥4 = 0.800 𝑥5 = 1.000 

𝑡1 = 0.0200 0.8822 0.8547 0.8229 0.7870 0.8445 

𝑡2 = 0.0400 0.8882 0.8640 0.8332 0.7979 0.8465 

𝑡3 = 0.0600 0.8939 0.8730 0.8431 0.8087 0.8485 

𝑡4 = 0.0800 0.8994 0.8816 0.8528 0.8193 0.8504 

𝑡5 = 0.1000 0.9047 0.8898 0.8622 0.8297 0.8524 

𝑡6 = 0.1200 0.9098 0.8977 0.8712 0.8397 0.8543 

𝑡7 = 0.1400 0.9146 0.9052 0.8799 0.8495 0.8562 

𝑡8 = 0.1600 0.9192 0.9123 0.8882 0.8590 0.8581 

𝑡9 = 0.1800 0.9236 0.9190 0.8961 0.8681 0.8599 

𝑡10 = 0.2000 0.9277 0.9253 0.9037 0.8769 0.8618 
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Fig.10: Example 5b: The Crank-Nicholson scheme results when 𝑥 ∈  [0, 1], 𝑡 ∈  [0, 0.2], 𝛽 =  1, 

ℎ =  0.2, 𝑘 =  0.02 and 𝛿 =  5. 
The values in Table 12 show that at x =  1.0, the values approach 0.9, which may indicate 

saturation or possible instability at δ. 

We conclude from the above that the higher δ, the faster the solution values and the faster 
it evolves over time. Smaller steps (h =  0.1) give more accurate and smoother results. The 
performance of schemes, the explicit and Crank-Nicholson, give close results, indicating their 
stability for this equation. When 𝑥 = 1, the values sometimes exhibit different behaviour, 
which reflect the influence of boundary conditions. Therefore, numerical solutions to the 
equation depend significantly on parameters 𝛿 and step size. Increasing 𝛿 increases solution 
values and speed of its evolution, while smaller steps lead to higher accuracy. Both schemes 
are effective for solving this equation under tested conditions. 
 
Conclusions 

GFE is a powerful tool for modelling the interactions between diffusion and non-linear 
growth, and its applications are broad in fields. The convergence conditions for explicit and 
Crank-Nicholson methods were analysed, and both methods demonstrated good stability in 
under certain conditions, with Crank-Nicholson method being superior in accuracy. 
Increasing value of leads to larger solution values and faster evolution, confirming its 
significant impact on the dynamics of the system. Small-step accuracy: Using small steps in 
time and space improves the accuracy of the results and reduces numerical errors. Both the 
explicit and Crank-Nicholson methods demonstrate effectiveness in solving the equation, with 
the explicit method being easier to implement, while the Crank-Nicholson method provides 
higher accuracy. 
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 نيكلسون -الحل العددي لمعادلة فيشر المعممة باستخدام طريقتي أويلر الصريحة وكرانك
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 معلومات البحث:   الخلاصة: 
( باستخدام طريقتين للفروق  GFEتقدم هذه الدراسة حلاً عددياً لمعادلة فيشر المعممة )

كرانكالالمحدودة:   وطريقة  الصريحة  طريقة  -طريقة  كل  تقارب  تحليل  تم  نيكلسون. 

على ديناميكيات النظام. أظهرت النتائج أن:  δنظرياً وعملياً، مع دراسة تأثير المعامل 

الطريقة    δزيادة   اظهرت  كما  قيمه  وارتفاع  الحل  تطور  في  تسارع  إلى  تؤدي 

كرانك طريقة  تفوقت  بينما  حسابياً،  كفاءة  أكثر  الدقة  -الصريحة  في  نيكلسون 

والاستقرار. استخدام خطوات زمنية ومكانية صغيرة يحسن دقة النتائج بشكل ملحوظ،  
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R2022a المعقد الظواهر  نمذجة  في  الطريقتين  فعالية  يؤكد  مما  تصفها ،  التي  ة 

 المعادلة. 

 05/05/2025 ريخ الاستلام:ات

 2025/ 15/06 التعديل:تاريخ 

 15/08/2025ريخ القبـــول: ات

 30/12/2025تاريخ الــنشر: 
 الكلمات المفتاحية:

معادلة فيشر المعممة، الحل العددي، 
-الطريقة الصريحة، طريقة كرانك

 نيكلسون، تحليل التقارب. 
 معلومات المؤلف

  الايميل:
 

 

 


