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Introduction

The Fisher equation (FE) is not only mathematical formula; it is a powerful tool for
understanding the interactions between temporal and spatial variations in natural and
artificial systems [1]. It remains one of fundamental models that contains to motivate
scientific and mathematical research, making it key topic in applied mathematics modelling
[2]. The generalized Fisher equation (GFE) is a fundamental model in study of gene diffusion,
chemical reactions, and heat transfer, making improving its numerical solution of great value
in these fields [3].

FE, introduced by Ronald in 1937, has been generalized. The GFE is development of the
basic equation and has been extended in various ways to model more complex phenomena in
fields such as biology, and physics. This equation expresses the interaction between diffusion
and non-linear growth, making it powerful tool for studying processes involving propagating
waves [2].

The generalised Fisher equation is a second order parabolic semilinear partial differential
equation:
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ou 0%u
" _ _ 0
dat Daxz 'Bu(l u )' (1)

At 6 > 0, thus, when & = 0, reduces to traditional FE. Which also known as Fisher-KPP
equation or KPP-Fisher equation or Fisher-Kolomogrov-Petrovsky-Piskunov equation or KPP

equation
ou 0%u

The generalised Burger-Fisher equation (3) is well-known model of convection-diffusion-
reaction equations

ou ou 0%u

- s U _ .8

5t + au Tx 922 Bu(1—ud). 3)
thus, when 3 = 0, reduces to generalised Burger’s equation.

ou ou 0%u

_ §_~ _p_" —

5t + au 7% D 922 0. (4)
when § = 1 in (4), we have the famous Burger’s equation

ou ou 0%u

ot 0x 0x?2

Many studies presented related to GFE, as analytical and numerical solution of GFE are
discussed using symmetry methods and mathematical analysis to study the properties of
propagating waves [1]. Kundu studies traveling wave solutions, the Painlevé analysis of the
generalised Fisher equation, and the Lotka-Volterra diffusion model [2]. Zhong presents the
higher-order Haar wave diagram with the Runge-Kutta method to solve the generalised
Burgers-Fisher and Burgers-Huxley equations [3]. Exact traveling wave solutions of the
generalised Fisher equation are also explored using analytical techniques, with a focus on
physical and biological applications [4]. Drabek and M. Zahradnikova studied propagating
waves in the generalised Fisher-Kolmogorov equation with discontinuous density-dependent
diffusion, highlighting the effect of non-uniform variations [5]. Abd-Elhameed et al. used a
new linear formulation based on non-symmetric Jacobi polynomials for numerical treatment
of the nonlinear Fisher equation, which improves numerical solution techniques [6], also they
provided a generalisation of Djeumen Tchaho formulas for analytical solutions and developed
new wavelet solutions for the generalised Fisher equation, which enhances the understanding
of its dynamic behavior [7], and Yadav Singh developed the Elzaki variational iteration
method for solving the generalised time-fraction Burgers-Fisher equation in porous media
flow modelling, which contributes to nonlinear transport analysis [8]. The authors in [11-19]
used finite difference methods for solving Fisher and Huxley equations and they studied the
stability of the Burger’s equation.

The importance of this research lies in providing a numerical solution to GFE and
analyzing the convergence of the explicit and Crank methods, which contributes to
understanding their performance and determining the optimal conditions for their use. It also
studies the effect of the parameter 6 on the dynamics of the solution, providing valuable
insights for practical applications.

In this paper, we consider solving the generalised Fisher equation numerically using the
explicit (forward) Euler method and the Crank-Nicholson method. Also, the convergence
(error) analysis of both schemes is examined. The paper is organised as following: section 1 is
a general introduction and literature review about the generalised Fisher equation. In section
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2, we present the numerical schemes and the convergence analysis is investigated in section
3. The conclusions are given in section 4.
The Explicit Euler and Crank Nicholson Schemes

The explicit method is a finite difference method used to numerically solve partial
differential equations, particularly, the time-dependent problems such as the heat equation
and the diffusion equation. It relies on estimating the value of a function at a future time step
using its values at the current time step, without the need to solve a system of linear
equations [7]. The explicit method is easy to implement, does not require solving systems of
linear equations, and is highly computationally efficient when using small time steps [9]. To
derive the explicit method of the generalised Fisher equation, the time derivative % at t; is
approximated by the forward difference approximation
U Ujjyr — Uy )
ot At
and the spatial second derivative is approximate using the central difference approximation
azu _ ui_l,j - Zui,j + ui+1,j
ax? Ax? ' (7
Then substituting the finite difference approximations (6) and (7) in the generalised Fisher
equation (1) which results in:

Uj jr1—Uij Uj—q,j=2U; j+Ujgrj 5
ety i (1 - (,)").

At Ax? (8)
Rearranging the terms in (8) and solving it for u; ;4 to have:
Upjpr = Upj + D AAth(ui—l,n = 2u;j + Uiyqj) + AtBup (1 - (ui.j)5)- ©)
Using r=D AAth’ where r represents the parameter which determines the stability of the
method, then we obtain the explicit scheme of the generalised Fisher equation
Upjer = (1= 200w + 7(wimnj + i ;) + AtBuy (1 - (ui.j)a)' (19)

The Crank-Nicholson method is a semi-implicit method for solving partial differential
equations. It is an improvement over the explicit and implicit methods. It averages the explicit

and implicit methods to achieve better numerical stability. The Crank-Nicholson method is
not as strict as the explicit method in time stability and is more accurate than the explicit
method, as it is a second-order method in time and space, stable and not susceptible to
numerical instability even at larger time steps. Its drawbacks include the requirement to solve
a system of linear equations at each time step, which increases computational cost compared
to the explicit method and can produce numerical oscillations in the solutions if the time and

space steps are not well controlled [10]. The time derivative % at tj4q/, is approximated by

the central difference approximation
a_u:ui,j+1_ui,j’ an
dt At
and the spatial second derivative is approximate using the average of the central difference
approximations at times t; and t;;,
0%uU U1 — 2Up; + Uy N Ui—q,j41 — 2Ujj1 T Uigq,jr1
dx? 20x? 20x? (12)

Then substituting the finite difference approximations (11) and (12) in the generalised Fisher
equation (1) and rearranging the terms, we have the Crank-Nicholson scheme for the
generalised Fisher equation.

—TUpjp1 + (24 20U — Ty = T + (2 — 20wy + Tugg +

8B (uyy) (1= (uy)°). (13)
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The Convergence Analysis

In this section, we examine and study the error analysis of the numerical solutions of the
generalised Fisher equation using the explicit Euler and Crank-Nicholson finite difference

schemes.

The Convergence Analysis of the Explicit Scheme

The error is measured by the difference between the exact solution of the partial
differential equation and the discrete numerical solution. Substituting the exact solution

u(x,t) in (1), we have
_ u(xi, tj+1) — u(xl-, t]) _D u(xi+1, t]) - ZU(XL', t]) + U(Xi_l, t])

b k h?
— Bu(x;, t;) (1 - (u(xi, t]-))a). (14)

Using Taylor's expansion of the function u(xi, t]-+1) about t; as follows
2 3

k k
u(x;, tivr) = ulx, ) + kue(xi, t) + == utt(xl,t )+ = uttt(xl,pj) (15)
where p; € (t], t]+1) Also, using Taylor's expansmn ofthe functions u(x1+1, t; ) and u(x1 1t )
about x;, we find

h2 h3 h*
u(xi1,t) = u(xg t;) + huy(x, t;) + Zuxx(xi, ;) + iuxxx(xi' t;) + E”xxxx(fi' ), (16)
where & € (x;, Xj41),

2 3 4
u(xi_l, t]) = u(xl-, t]) - hux(xi, t]) + %uxx(xi, tj) - %uxxx(xi, t]) + %uxxxx({i, tj), (17)
where §; € (X;_1,X;). Substituting (15) in (14), we have '
u(xi ten) —ulxn ) _ wlxo k) —u(xuty)
k
K3
u(xl, t;) + ku(x;, t;) LK utt(xl,t ) . 37 Uee(x1,p5) — u(x;, )
3 k
kut(xl, t;) LK utt(xl,t ) . 37 e (x4, p5)
k
k k?
= ut(xut ) +5 utt(xu P]) + = uttt(xupj) (18)
In the same way, substituting (16) and (17) in the second term in (14), we obtain
u(xi+1, tj) - ZU(Xi, t]) + U(Xi_l, tj)

h2
h2 h3
u(xu t; ) + hux(xu t; ) + uxx(xu f ) + 31 uxxx(xu i ) + 41 uxxxx(fu ¢ ) Zu(xl, t; )
h? h?
h? h3
N u(x;, t;) — huy(xs, t7) + uxx(xl, t;) — 37 uxxx(xl, t;) + 7] uxxxx(fl, t;)
h2
= uxx(xi, t')
h4-
4, (uxxxx(fu t; ) + uxxxx((u t; )) (19)
By substituting (18) and (19) in (14), we have

Tzn a utt(xu tj ) h (uxxxx(fu ¢ ) + uxxxx(cu t; )) .Bu(xir tj) (1 - (u(xil tj))6>- (20)

Contlnulng with the same approach, we have the equation in the form

k h
" = utt(xl, t;) — uxx(xl, t;) + 0(k? h*)
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C(k h
T = lim e (xi ) = 57tk ) + 0% R} = 0
We assume that u(x, t) satisfies the smooth transmon condition of the above proof and that
the diagram is the explicit method of the generalised Fisher equation. Convergent, and we

have and satisfies the condition

1+L k h
( f)E"+k{ uge (x5, t5) — uxx(xl,t)+0(k2 h4)}

1+ 2R
Proof:
u(xl-, tj+1) — u(xl-, t]) u(xl-+1, tj+1) - ZU.(Xi, tj) + U.(Xi_l, tj+1)
T} = 2 - = -f@ a9
We rephrase the above equation as follows:
1 1 1 1
UMt - U URR - 208+ UR _ ram 20)

k h?
Subtracting equations (20) and (19), we get:
u(xl-, tj+1) — Uin+1 - u(xl-, tj) + Uln

k
_ u(le, tj+1) Ul - Zu(xi, tj+1) + 207" + u(xi—l' tj+1) - Ut

2 — fulx, 1))
+FWP)
We substitute e! = u(x;, t;) — U to get:
e+l _ gn  on+l _ 5, n+1 + en+1
T =2 - L h2 —f(u(x t)) + (UM

Multiply the equation by k

n+l _ 9, n+1 + entl

KT+ ef = k[f(uCe, ) + FUP] = k==L et

Letr = %

KT + el — k[f(u(x, t) + FUM] = R(el + 2e] + 1) + et

KT + el — k[f(u(x, t) + F(UM] = Rel'i + Rel 1 + (1 + 2R)el™!
LetE" = max{e““}
The maximum error at time step n, then taking the maximum error with respect to i on the
right-hand side of, we arrive at applying the Lipschitz condition to the nonlinear limit, gives:

If (uCx, ) + FUD| < Lelulx, ©) — U] < Lelef|
Leads to
1+L
ef*1 < —(1 " 2;) E" + KT}

Or taking the maximum with respect to i, and using the theorem above, we get

- 1+L
The Convergence Analysis of the E"*! < %E” { uee (x5, t5) — uxx(xl, t;) + 0(k?, h4)}

Crank-Nlcholson Scheme

While the convergence condition proof for the Crank-Nicholson method can be derived by

same way in explicit method. The reduction error is measured by the difference between the

true partial differential equation and the discrete plot. Substituting the exact solution u(x, t)
into the differential equation

T — U(xl-, tj+1) - U(Xi,tj) _ U(Xi+1,tj+1) - ZU(xi,th) + U(xi—l'tj+1)

LT k 2h?
U(xl-+1, tj) - ZU(xi, t]) + U(xl-_l, t])
B 2h? S
— ﬁ [(Un UTL+1) ( UTL)(S (Uzn+1) )] (21)

Using Taylor's expansion of the function u(xl, ]+1) about t,, as follows:

u(xip1, t7) = ulx, ) + kue(x, 6) + = K utt(xl, t;) + 0(k?) (22)
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where 0(k3) represents the derivatives with respect to u of order three and above. Again,

using Taylor's expansion of the functions u(xi+1, t]-) and u(xi_l, t]-) about x;, we find:
2

u(xi1, ) = ulxg, ) + hue(x, 6) + = h uxx(xl, 1)+ 0(h®) (23)
%,
u(x;_q, ]) =u(x;, ¢ ) huy (x;, J) +— h uxx(xl, ) + 0(h3) (24)

where 0(h3) represents the derivatives w1th respect to x of the third order and above. We
substitute the expansion of the above equations into equation (21), which is as follows:

u(x;, t;) + kue(x;, t)) LK utt(xl, t;) + 0(k3) —u(x;, t;)

k
u(xl, t; ) + kut(xl, t; ) + utt(xl, t; ) + 0(k?) Zu(xl-, tj+1)
Zh2 2h?
u(x;, t;) + kue(x;, t)) + utt(xl, t;) + 0(k?)
+ Zh2
u(xl, t; ) + huy(x;, ¢ ) + uxx(xl, t; ) + 0(h®) Zu(xl-, tj)
2h2 2h2
3
N u(xl, ) hux(xl, ])2-;2 uxx(xl, ) +0(h>) _ B[(u?)(l ~ (u?)5)]

Applying the same steps as in the explicit equation and simplifying the similar terms to get the
following image:

TP = (x4, ) + wer (%1, ) + B (1 — @H?) + 0(k?, h?)
Or taking the maximum with respect to i, and using the same technique as in the explicit
method, we get

Entl < (i_i_—é‘;)E" + k{ue (x4, ) + we (22, £) + B (1 — WM?) + 0(k?, h?)}.

Numerical Examples and Results

We provide several diverse instance of solving GFE for varying issue parameter values in this
section.

Example 1

Take x € [0,1],t € [0,0.2], 8 = § = 1 by divided [0,1] at n = 5, the time interval [0,0.2] is split
into m = 10 sub-intervals with step size k = At = % = 0.02, and the step size on x-axis h =

bz _ .2,
n

Table 1: Example 1a: The explicit scheme results when x € [0,1],t € [0,0.2],
B =1h =02k = 0.02andd =
x; = 02000 x, = 04000 x5 = 0.6000 x, = 0.8000 x- = 1.0000

t; = 0.0200 0.5344 0.5108 0.4869 0.4628 0.4859
t, = 0.0400 0.5392 0.5158 0.4919 0.4678 0.4879
t; = 0.0600 0.5440 0.5208 0.4969 0.4727 0.4899
t, = 0.0800 0.5487 0.5258 0.5019 0.4777 0.4919
ts = 0.1000 0.5535 0.5308 0.5069 0.4827 0.4939
te = 0.1200 0.5582 0.5358 0.5119 0.4877 0.4959
t; = 0.1400 0.5629 0.5407 0.5169 0.4927 0.4979
tg = 0.1600 0.5676 0.5457 0.5219 0.4977 0.4999
to = 0.1800 0.5722 0.5507 0.5269 0.5027 0.5019
t10 = 0.2000 0.5769 0.5556 0.5318 0.5077 0.5039
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Forward Euler Scheme Solution for the Fisher's Equation

1.5
t 1 1

Fig.1: Example 1a: The explicit scheme results when x € [0,1],t € [0,0.2], 8 = 1,h = 0.2,
k = 0.02andé = 1.
Table 1 shows that the values of the solution gradually increase with increasing time (t) for
each spatial point (x). The figure indicates that the solution evolves smoothly with time, with a
slight increase in values at x = 1 compared to the rest of the points, which may indicate
boundary effects.

Table 2: Example 1b: The Crank-Nicholson scheme results when x € [0,1],t €
[0,0.2], = 1,h = 0.2,k = 0.02and§ = 1.
x; = 0200 x,=0400 x;=0.600 x,=0.800 x;=1.000

t; = 0.0200 0.5344 0.5108 0.4869 0.4628 0.4859
t, = 0.0400 0.5392 0.5158 0.4919 0.4678 0.4879
t; = 0.0600 0.5440 0.5208 0.4969 0.4727 0.4899
t, = 0.0800 0.5487 0.5258 0.5019 0.4777 0.4919
ts = 0.1000 0.5535 0.5308 0.5069 0.4827 0.4939
te = 0.1200 0.5582 0.5358 0.5119 0.4877 0.4959
t; = 0.1400 0.5629 0.5407 0.5169 0.4927 0.4979
tg = 0.1600 0.5676 0.5457 0.5219 0.4977 0.4999
to = 0.1800 0.5722 0.5507 0.5269 0.5027 0.5019
t10 = 0.2000 0.5769 0.5556 0.5318 0.5077 0.5039

Crank-Nicholson Scheme Solution for the Fisher's Equation

s
t 4 T

Fig.2: Example 1b: The Crank Nicolson scheme results when x € [0,1],t € [0,0.2], 8 = 1,
h =02k =002andé = 1.
Table 2 shows a gradual increase in the solution values with increasing time (t) for each
spatial point (x). Figure 2 indicates that the solution evolves smoothly with time, with a slight
increase in values at x = 1 compared to the rest of the points, which may indicate boundary
effects. The results are almost identical to the explicit scheme, indicating the stability and
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accuracy of both schemes for these parameters. The figure shows behavior similar to the
solution, with gradually increasing values over time.

Example 2
Take x € [0,1],t € [0,0.2],3 = 1,6 = 2 by divided [0,1] at n = 5, the time interval [0,0.2] is
splitinto m = 10 sub-intervals with step size k0.02, and the step size on x-axis h = 0.2.

Table 3: Example 2a: The explicit scheme results when x € [0,1],t € [0,0.2],
B =1h =02k = 0.02andé = 2.
x, = 0200 x, =0400 x;=0600 x,=0.800 xc=1000

t; = 0.0200 0.7311 0.7024 0.6720 0.6401 0.6792
t, = 0.0400 0.7369 0.7095 0.6794 0.6476 0.6815
t; = 0.0600 0.7427 0.7165 0.6867 0.6552 0.6838
t, = 0.0800 0.7484 0.7235 0.6939 0.6626 0.6861
ts = 0.1000 0.7540 0.7304 0.7011 0.6701 0.6884
te = 0.1200 0.7595 0.7372 0.7083 0.6775 0.6906
t; = 0.1400 0.7649 0.7439 0.7153 0.6848 0.6929
tg = 0.1600 0.7703 0.7506 0.7223 0.6921 0.6951
to = 0.1800 0.7756 0.7571 0.7292 0.6993 0.6974
t10 = 0.2000 0.7807 0.7636 0.7360 0.7064 0.6996

Forward Euler Scheme Solution for the Fisher's Equation

2 15
t 4 4

Fig.3: Example 2a: The explicit scheme results when x € [0,1],t € [0,0.2], 8 = 1,h = 0.2,
k = 0.02andé = 2.

From Table 3, it appears that the values are higher compared to Example 1 due to the increase
in §, indicating that 6 increases the rate of change of the solution. The figure shows a steeper
curve, reflecting the effect of 6 on the dynamics of the equation.

Table 4: Example 2b: The Crank-Nicholson scheme results when x € [0,1],t €
[0,02], = 1,h = 0.2,k = 0.02and§ = 2.
x; =0200 x, =0400 x;=0.600 x,=0800 x:=1.000

t; = 0.0200 0.7311 0.7024 0.6720 0.6401 0.6792
t, = 0.0400 0.7369 0.7095 0.6794 0.6476 0.6815
t; = 0.0600 0.7427 0.7165 0.6867 0.6552 0.6838
t, = 0.0800 0.7484 0.7235 0.6939 0.6626 0.6861
ts = 0.1000 0.7540 0.7304 0.7011 0.6701 0.6884
te = 0.1200 0.7595 0.7372 0.7083 0.6775 0.6906
t; = 0.1400 0.7649 0.7439 0.7153 0.6848 0.6929
tg = 0.1600 0.7703 0.7506 0.7223 0.6921 0.6951
to = 0.1800 0.7756 0.7571 0.7292 0.6993 0.6974

t10 = 0.2000 0.7807 0.7636 0.7360 0.7064 0.6996
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Crank-Nichol: h Solution for the Fisher's Equation

2 15
t " 4 «

Fig.4: Example 2b: The Crank-Nicholson scheme results when x € [0,1],t € [0,0.2],f = 1,
h =02k =002ands§ = 2.
From Table 4 it is shown that the results values are consistent with the explicit scheme, which
confirms the accuracy of the two schemes.
Example 3
Take x € [0,1],t € [0,0.2], 8 =, = 3 by divided [0,1] at n = 5, the time interval [0,0.2] is split
into m = 10 sub-intervals with step size k = 0.02, and the step size on x-axis h = 0.2.
Table 5: Example 3a: The explicit scheme results when x € [0,1],t € [0,0.2],
B =1,h =02k =002andd = 3.
x; =0200 x,=0400 x;=0.600 x,=0800 x:=1.000

t; = 0.0200 0.8115 0.7825 0.7506 0.7162 0.7643
t, = 0.0400 0.8176 0.7906 0.7593 0.7252 0.7665
t; = 0.0600 0.8235 0.7986 0.7678 0.7342 0.7688
t, = 0.0800 0.8292 0.8065 0.7762 0.7431 0.7710
ts = 0.1000 0.8348 0.8141 0.7845 0.7518 0.7732
te = 0.1200 0.8403 0.8216 0.7926 0.7605 0.7754
t; = 0.1400 0.8456 0.8289 0.8006 0.7690 0.7775
tg = 0.1600 0.8508 0.8361 0.8084 0.7774 0.7797
to = 0.1800 0.8559 0.8430 0.8160 0.7856 0.7818
t10 = 0.2000 0.8608 0.8498 0.8234 0.7937 0.7840

Forward Euler Scheme Solution for the Fisher's Equation

uU(x,t)

1.5
t 1 1

Fig.5: Example 3a: The explicit scheme results when x € [0,1],t € [0,0.2, = 1,h = 0.2,
k = 0.02andé = 3.
From Table 5, the values are higher than in Example 2, confirming that increasing § increases
the solution values. The figure 5 shows a faster evolution of the solution over time.
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Table 6: Example 3b: The Crank-Nicholson scheme results when x € [0,1],t €
[0,0.2], = 1,h = 0.2,k = 0.02and§ = 3.

x; =0200 x,=0400 x;=0600 x,=0800 x5=1000

t; = 0.0200 0.8115 0.7825 0.7506 0.7162 0.7643
t, = 0.0400 0.8176 0.7906 0.7593 0.7252 0.7665
t; = 0.0600 0.8235 0.7986 0.7678 0.7342 0.7688
ty, = 0.0800 0.8292 0.8065 0.7762 0.7431 0.7710
ts = 0.1000 0.8348 0.8141 0.7845 0.7518 0.7732
te = 0.1200 0.8403 0.8216 0.7926 0.7605 0.7754
t; = 0.1400 0.8456 0.8289 0.8006 0.7690 0.7775
tg = 0.1600 0.8508 0.8361 0.8084 0.7774 0.7797
to = 0.1800 0.8559 0.8430 0.8160 0.7856 0.7818
t10 = 0.2000 0.8608 0.8498 0.8234 0.7937 0.7840

Crank-Nicholson Scheme Solution for the Fisher's Equation

0.88

0.86

0.82
0.8

=
S 0.78

0.74

0.72

07 -]
10 e

4 . 3
3 25

2
2 15
t 1 4

Fig.6: Example 3b: The Crank-Nicholson scheme results when x € [0,1],t € [0,0.2], 8 = 1,
h =02k = 002andé = 3.

The values in the table show a gradual increase with time for each spatial point (x; to x5). At
x = 1.0, the values are slightly higher than at other points, which may reflect a boundary
effect. The curves trend upward steadily, indicating that the solution is stable. The figure
shows that as x increases, the solution value decreases slightly (except for x = 1.0, where the
values are higher) and the slope is larger compared to § = 1 or 2, confirming that increasing 6
accelerates the system's dynamics.
Example 4
Take x € [0,1],t € [0,0.2],8 = 1,6 = 4 by divided [0,1] at n = 5, the time interval [0,0.2] is
splitinto m = 10 sub-intervals with step size k = 0.02, and the step size on x-axis h = 0.2.

Table 7: Example 4a: The explicit scheme results when x € [0,1],t € [0,0.2],
B =1h =02k = 0.02andé = 4.
x, = 0200 x, =0400 x;=0600 x,=0.800 x.=1000

t; = 0.0200 0.8550 0.8266 0.7946 0.7591 0.8129
t, = 0.0400 0.8611 0.8354 0.8041 0.7692 0.8150
t; = 0.0600 0.8669 0.8440 0.8135 0.7792 0.8171
t, = 0.0800 0.8725 0.8523 0.8226 0.7891 0.8192
ts = 0.1000 0.8780 0.8604 0.8316 0.7987 0.8212
te = 0.1200 0.8833 0.8682 0.8402 0.8082 0.8233
t; = 0.1400 0.8884 0.8757 0.8487 0.8175 0.8253
tg = 0.1600 0.8933 0.8829 0.8568 0.8265 0.8273
to = 0.1800 0.8980 0.8898 0.8647 0.8353 0.8293
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t10 = 0.2000 0.9025 0.8964 0.8724 0.8439 0.8313

Forward Euler Scheme Solution for the Fisher's Equation
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Fig.7: Example 4a: The explicit scheme results when x € [0,1],t € [0,0.2], 8 = 1,h = 0.2,
k = 0.02andé = 4.

From Table 7 the values continue to increase as § increases. The figure shows a faster

behavior of the solution, with higher values at x = 1.

Table 8: Example 4b: The Crank-Nicholson scheme results when x € [0,1],t €
[0,0.2], = 1,h = 0.2,k = 0.02and§ = 4.
x; = 0200 x,=0400 x;=0.600 x,=0.800 xc=1.000

t; = 0.0200 0.8550 0.8266 0.7946 0.7591 0.8129
t, = 0.0400 0.8611 0.8354 0.8041 0.7692 0.8150
t; = 0.0600 0.8669 0.8440 0.8135 0.7792 0.8171
t, = 0.0800 0.8725 0.8523 0.8226 0.7891 0.8192
ts = 0.1000 0.8780 0.8604 0.8316 0.7987 0.8212
te = 0.1200 0.8833 0.8682 0.8402 0.8082 0.8233
t; = 0.1400 0.8884 0.8757 0.8487 0.8175 0.8253
tg = 0.1600 0.8933 0.8829 0.8568 0.8265 0.8273
to = 0.1800 0.8980 0.8898 0.8647 0.8353 0.8293
t10 = 0.2000 0.9025 0.8964 0.8724 0.8439 0.8313

Crank-Nicholson Scheme Solution for the Fisher's Equation
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Fig.8: Example 4b: The Crank-Nicholson scheme results when x € [0,1],t € [0,0.2],f = 1,
h =02k = 0.02andé = 4.
The values in the table show the same solutions as those in Table 6, but the solution at x = 1.0
shows larger jumps, which may be due to the interaction of the terms with the parameter é.
Example 5
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Take x € [0,1],t € [0,0.2],8 = 1,6 = 5 by divided [0,1] at n = 5, the time interval [0,0.2] is
split into m = 10 sub-intervals with step size k = 0.02, and the step size on x-axis h = 0.2.

Table 9: Example 5a: The explicit scheme results when x € [0,1],t € [0,0.2],
B =1,h =02k =0.02andd = 5.
x; =0200 x,=0400 x;=0600 x,=0.800 x:=1.000

t; = 0.0200 0.8822 0.8547 0.8229 0.7870 0.8445
t, = 0.0400 0.8882 0.8640 0.8332 0.7979 0.8465
t; = 0.0600 0.8939 0.8730 0.8431 0.8087 0.8485
t, = 0.0800 0.8994 0.8816 0.8528 0.8193 0.8504
ts = 0.1000 0.9047 0.8898 0.8622 0.8297 0.8524
te = 0.1200 0.9098 0.8977 0.8712 0.8397 0.8543
t; = 0.1400 0.9146 0.9052 0.8799 0.8495 0.8562
tg = 0.1600 0.9192 0.9123 0.8882 0.8590 0.8581
to = 0.1800 0.9236 0.9190 0.8961 0.8681 0.8599
t10 = 0.2000 0.9277 0.9253 0.9037 0.8769 0.8618

Forward Euler Scheme Solution for the Fisher's Equation
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Fig.9: Example 5a: The explicit scheme results when x € [0,1],t € [0,0.2], 8 = 1,h = 0.2,
k = 0.02andé = 5.

From Table 9 the highest values so far are due to increasing §. The figure shows a rapid

evolution of the solution with time.

Table 10: Example 5b: The Crank-Nicholson scheme results when x € [0,1],t €
[0,0.2], = 1,h = 0.2,k = 0.02and§ = 5.
x; = 0200 x,=0400 x3=0.600 x,=0.800 x5 =1.000

t; = 0.0200 0.8822 0.8547 0.8229 0.7870 0.8445
t, = 0.0400 0.8882 0.8640 0.8332 0.7979 0.8465
t; = 0.0600 0.8939 0.8730 0.8431 0.8087 0.8485
t, = 0.0800 0.8994 0.8816 0.8528 0.8193 0.8504
ts = 0.1000 0.9047 0.8898 0.8622 0.8297 0.8524
te = 0.1200 0.9098 0.8977 0.8712 0.8397 0.8543
t; = 0.1400 0.9146 0.9052 0.8799 0.8495 0.8562
tg = 0.1600 0.9192 0.9123 0.8882 0.8590 0.8581
to = 0.1800 0.9236 0.9190 0.8961 0.8681 0.8599
t10 = 0.2000 0.9277 0.9253 0.9037 0.8769 0.8618
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Fig.10: Example 5b: The Crank-Nicholson scheme results when x € [0,1],t € [0,0.2], 8 = 1,
h =02k =0.02andés = 5.
The values in Table 12 show that at x = 1.0, the values approach 0.9, which may indicate
saturation or possible instability at 6.

We conclude from the above that the higher §, the faster the solution values and the faster
it evolves over time. Smaller steps (h = 0.1) give more accurate and smoother results. The
performance of schemes, the explicit and Crank-Nicholson, give close results, indicating their
stability for this equation. When x = 1, the values sometimes exhibit different behaviour,
which reflect the influence of boundary conditions. Therefore, numerical solutions to the
equation depend significantly on parameters § and step size. Increasing § increases solution
values and speed of its evolution, while smaller steps lead to higher accuracy. Both schemes
are effective for solving this equation under tested conditions.

Conclusions

GFE is a powerful tool for modelling the interactions between diffusion and non-linear
growth, and its applications are broad in fields. The convergence conditions for explicit and
Crank-Nicholson methods were analysed, and both methods demonstrated good stability in
under certain conditions, with Crank-Nicholson method being superior in accuracy.
Increasing value of leads to larger solution values and faster evolution, confirming its
significant impact on the dynamics of the system. Small-step accuracy: Using small steps in
time and space improves the accuracy of the results and reduces numerical errors. Both the
explicit and Crank-Nicholson methods demonstrate effectiveness in solving the equation, with
the explicit method being easier to implement, while the Crank-Nicholson method provides
higher accuracy.
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