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1. Introduction:
Let A, indicate the class of meromorphic multivalent functions h(z) normalized by the following:
h(z) =z""+ Y2 a5,y + 2577, v € N\{0}. Q)

which are analytical in the unit disk with a hole in it

Ur={zeC0< |z] <1} =N\{0}.
In addition, a function h is said to belong to the class LSp (a)(0 < a < 1) of star-like meromorphic

p-valent function

zh!(2)
vh(z)

h(z) € LSp(a) &N < —a
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A function h is therefore said to be a member of the class LCTE“)(O <a<l)of
star-like meromorphic p-valent function, if

(zh' @)
h(z) € LC,(a) & ERT(Z) <-—-a

It is evident that the class of meromorphic p-valent starlike functions, LSp(0) = LSp,
exists. The class of meromorphic p-valent close-to-convex functions is designated by
Lk;(a), and it is defined as:

zh'(z) _
vg(z)
Where g(z) € LSp A function h, where 0 < ¢ < 1, has the following definition for the g-derivative

h(z) € Lkp(a) & N

a.

(or g-difference) operator:

h(cz)-h(2)

Sch(z) = z(c-1) '’

(z # 0).

It is clear to observe that

0¥ asz°} = XZals, clasz®™ ,(s €N,z € D) )
The definition of the g-number shift factorial for every non-negative integer s is

o 1,s=0
Ls,clt = {[1, cllz,clf3,c]....[s,c], s € N.

In addition, the g-generalized Pochhammer symbol for x € R is provided by

3 1,s=0
[x,cls = {[x,c][x+ Lcllx+2,c]...[x+s—1,c], SEN.

Comparative operator D, .: A, — A, is described as in [1]:
D, ch(z) = (1 + [v,clwh(z) + pc?zé.h(z). (3)

Where u > 0. One may quickly determine that using Equation (1)

Dych(z) =277 + X1 (1 + [v, c]u + pc®[s, c])asy,z°*7.
Where
Dp h(z) = h(2).
And
D ch(z) = Dy (Dych(2))

=z7" + XL1(1 + [v,clu + pc¥[s, cD?as4p2° . (4)
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In a similar way for m € N, we have

D™ ch(z) = 270 + B4 (1 + [v, clu + pc[s, €)@y 2.

Which studied by [2] We create a subclass Lk, .(v,m, A)of A, by utilizing the operator D™}, . as
follows. In this article, we are primarily motivated by the newly published study of Hu et al. in
Symmetry [3] and some other relevant research as described above for example [4], [5].

Now, let —-1<B<A<1, VzeU" a function h € 4, is referred to as a class member.
Lk, (v, m, A) when it fulfills:

!
Z(8CDchh(Z)) +v8:D[l':h(z)

<1, (5)

[
Bz(acu,Tch(z)) +Av8DIh(2)

See for example [6], [7], and [8]. Several writers examined the following intriguing geometric
features of this function subclass for various classes, such as [9], [10], [11], and [12].

2. Sufficient and necessary condition:

Here, we provide a necessary and sufficient condition for the function h to belong to the
class Lk, (v, m,A) .

Theorem (2.1): h(z) defined by (1) is in the class Lk, .(v,m, A). if and only if
Yszo(L+ [v, clu+ pc?[s,vD™[(s + v)(1 = B) + P(1 — A)]as4y
<v(A-B), (6)
where —1 < B < A < 1 and for all z € U* .For the function, the outcome is sharp

L v(A-B) s+v
h(z) =z""+ (1+[v,c]u+ucV[S.C])m[(S+v)(1—B)+P(1—A)]Z S EN

Proof: Let (6) holds true and |z| equal one, then

Y22 o(1+[w,clu+uc?[s,c)™(s+2v)ag4pz5tY

v(‘;—,B)+Z§°;O(1+ [v,clu+uc?[s,c)™((s+v)B+Av)as,z5t?

<1

T2 01+ [v,clptuc®[s,c)™(s+2v)astpz5tY|

|v(/;_73)+2§';o(1+ [v,clu+uc[s,cD™((s+v)B +Av)a5+,,zs+”‘

<1

2szo(1+ [v,clp + pc”[s, cD™(s + v)(1 = B) + P(1 — A)llassy| <v(A—B)
So, by principle of maximum modulus, h € Lk, .(v, m, A).

Conversely, suppose that h € Lk, .(v, m, A) Then from (5), we have
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Yo o(1+[v,clutuc?[s,c)™(s+2v)aspz5t?

v(/;_zB)+Z?io(1+ [v,clu+uc[s,c)™((s+v)B+Av)agy,zStY

Y21+ [vclutucy[s,c)™(s+2v)as,,z5tY

v(A-B)
70

+XR oA+ [v,clp+uc?[s,cD™((s+v)B+Av)as4 25T

Since Re(z) < |z|,Vz(z € U™). Define

o0 v m S+v
Re{ Yomo(1+[v,clu+puc®[s,c])™(s+2v)as;yz }S 1. (7)

HATE) 4 5% o (L [v,cl it pe?[s,c))M((s+0)B+AD) g+

The value of z we choose on the real axis so that 6D, h(z) is real.

Yz + [v, clp + uc®[s, cD™(s + 2v)asypz°""

v(A-B)

zv

<

+ 22, (1+ [v,clp + pc®[s, cD™((s + v)B + Av)as,, 2577,

Letting z — 1~ through real values,
Yoz1(1 + [v,clp + uc®[s, cD™(s + 2v)asy, < v(A — B)
+ 32,1+ [v,clp + uc’ls, cD™((s + v)B + Av) gy
So, we can write (7) as

Yol + [v,clp + pc?[s,vD™[(s + v)(1 = B) + P(1 — A)]ass, < v(A = B),

Sharpness of the outcome now comes after setting

— -V v(A-B) s+v
hS(Z) =zt (1+[v,clp+uc’[s,c)™[(s+v)(1-B)+P(1-A)] , s20.m
Corollary (2.2): Let h € Lk, .(v,m, A). Then
v(A-B)
Assv S (1+[v,clu+uc?[s,cD™m[(s+v)(1-B)+P(1-A4)] ’ s=0 (8)

The bounds for the growth theorem and distortion theorem for the class Lk, (v, m, A) are then

obtained.
3. Growth and distortion theorems:
Theorem (3.1): If h € Lk, .(v,m, A), and (s = 1), then

1 (A-B)
= i < 16cDIh(@)|

rv [2v-v(A+B)

1 v(A-B) v _
==+ o—varE) " ,(zl=r<1). 9)

For the function, the outcome is sharp:
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- v(A-B)
hs(2) = 27+ e e G B Pa Al - (10)
Proof: Let h € Lk, .(v,m, A). Then by Theorem 1, we get
1+ [v,clu+uc’[1,cD™[(w)(1 = B) + P(1 — A)] XsZolasiyl
< X0+ [v,clp + pc®[s,cD™[(s + v)(1 — B) + P(1 — A)] as4y

<v(A - B).
Or
© v(A-B)
Liszo@sev < A+[v,clu+uct[1,cD™ () (1-B)+P(1-A)] (11)
Hence
|6: D h(2)| < o+ ZEa (L + [, el + uc[s, D)™ Gy 2]+
1 [o/0)
<ot At wclp+pc[1, c)™z]” XsZo asto
1 [ee]
=S+ @+ v clp+pc’[L,cD™r’ Xilo sy
1 v(A-B) v
= rv T [2v-v(A+B)] r. (12)
Similarly,

|6:DILh(2)] 2 = = Zo(1 + [, clu + ue®[s, cD™ agyy |2+

1 [e's)
>——(1+ [U: C].u + .ucv [1: C])mlzlv Zs=0|a5+v|

— zl?

1 co
=< — @+ clu+puc’[1,cD™ r” Bolassyl

1 v(A-B) v
= r?  [2v-v(4A+B)] (13)

From (12) and (13), we get (9).m
Theorem (3.2): If h € Lk, c(v,m, A). And (s = 1), then

P v2(A-B) 51

rP+1  [2v-v(A+B)]
< |(s.05h() |

P v2(A-B) _
<5mt T " Lzl =r<1). (14)

For the function, the outcome is sharp:

— v(A-B)
h2) =27 + o e ma G- ra-a] = (15)

proof: Let h € Lk, (v, m, A). Then by Theorem (1), we get
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1+ [v,clp+pc?[1,cD™[()(A = B) + P(1 = A)] XsZolassv]
< Yszo(1 + [v,clu + uc®[s,cD™[(s + v)(1 — B) + P(1 — A)]as+p
<v(A - B).

Or

o v(A-B)
szt Asi < (1+[v,clptuc?[1,c)™[()(1-B)+P(1-A)] (16)

Hence
|6CD;7,lch(Z)l |

< —— + Y201+ [v, clu + pc¥[s, c))™(s + 1) agpy 2|71

- L_Z|v+1

< 4

- |Z|U+1

+ @+ [v,clp+ ucls,cD™(s + )|z X0 sty

v

=——+ @+ [vclp+pcls,cD™Wr" 1 Xelo asiy

rv+i

v v2(A-B) v—1
— rv*l " [2v-v(4+B)] o (17)

Similarly,

|(.Dpeh())|

Y2 (1 + [y, clp + uc®[s, cD™(s + v)asyy |z

v
- L—Z|V+1

v
- |Z|v+1

(1 + [v,clp+ uc?[s, cD™z|" ™ o aso

4

=—om— A+ wclp+pc®[1, D™ r7 = o Asy

rv+i

v P¥4-B)
— rvil [2v—v(A+B)]r ) (18)

From (17) and (18), we get (14). m

The radii of starlikeness and convexity are fixed in Theorems (4.1) and Theorem (4.2).
4. Radii of starlikeness and convexity theorems:
Theorem (4.1): If h(z) € Lk, (v,m,A), then h(z) is meromorphic starlike of order
6(0 < 6 < P) inthedisk |z| < r;, where
1

(P—9)(1+[v,c]u+uc"[s,c])m[(s+v)(1—B)+P(1—A)]}s+W ¢>1
(s+3P-6)v(4-B) Y=

r, = ishg {

The result of function h(z) is sharp defined by (6).

Proof: To prove

hi(z)z

|v + e littlethan v—6 hor |z| < 1. (19)
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But

zh! (z2)+vh(z) s+2v

h(z)

YR, (s+2v)asipz
143320 as4pzst2?

Y52 (s+2v)as,plz|$12Y

1-%52 as+plz|+2Y

So, (19) will be satisfied if

Y52 o(s+2v)as,plz|$H2Y

1-%521 aseplz|s+2Y

<v-—-0.

Orif

(o] ( +3 _9) S+v
yg, SOt g sh2v < g, (20)

Since h(z) € Lk, (v, m, A), we have

o @+[v,clut+uc®s,cD™[(s+v)(1-B)+P(1-A4)]
s=1 v(4-B)

Agip <1

Hence, (20) is true if

(s+3P-06) |Z|S+2P < (A+[v,clu+pc®[s,cD™[(s+v)(1—-B)+P(1-A4)]
P-0 - v(A-B)

Or equivalently

1
P-0)A+[v,clu+uc®[s,c)™[(s+v)(1—B)+P(1-A)])s+3P
Izl < { (s+3P-0)v(A-B) } s 21

Setting |z| = r;, we get the desired result. m
Theorem (4.2): If h(z) € Lk, .(v,m,A), then h(z) is meromorphic function convex of 6

order when (0 < 6 < 1) inthe disk |z| < r,, and

1

. v(w=-0)(A+[v,clu+uc’[s,c)™[(s+v)(1—B)+P(1-A)])s+2P
2= lShs{ (s+v)(s+3v-6)v(A—B) } z 1. (21)
The result of function h(z) is sharp is defined by (6).
Proof: It is sufficient to prove that
M@z 1+pl<v-0 hor |z| <r (22)
hi(z) = 2
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But this equation

zh" )+ +v)h'(2)
hi(z)

zhn(z)
hi(z)

+1+v|=

T2, (s+v)(s+2v)agyplzlSH2Y
V321 (s+0)assp|2I*2Y

So, (22) be satisfied if

Y2, (s+v)(s+2v)asyplz|ST2P
V=Y (s+v)assp|z|SH2P

<v-—-0,
orif

o (+v)(s+3v-0)asip S+2P
Yoo o TS L (23)

Since h(z) € Lk, (v, m, A), we have

o fQA+[v,clut+uc®s,c])™[(s+v)(1-B)+P(1-A4)]
25‘:1

v(A-B) sy p <1

Hence, (23) will be true if

(s+v)(s+3v-0) |Z|S+2p < (A+[v,clut+uc?[s,c)™[(s+v)(1-B)+P(1-A)]
v(v-0) - v(A-B)

)

Or equivalently

1
v(w-0)(A+[v,clu+uc’[s,c)D™[(s+v)(1-B)+P(1—A)|)s+3P
2| < { (s+v)(s+3v-6)v(A-B) } s 2 0.

Setting |z| = r,, we get the desired result m

Theorem (4.3): The class Lk, (v, m, A), is closed for convex linear combinations.

Proof: Let's use the functions
hi(z) = 27 + 32 |agp |25, (G =1.2).
Be in the class Lk, (v, m, A). It is sufficient to show that the function defined by
F(z)=0-t)h;+th, , (0<t<1).

Is also in the class Lk, (v, m, A). Since

F(z) = Zip + Z;.;1[(1 - t)|a5+P,1| + t|a5+P,2|]ZS+P ,(0=<t<1). (24)

Hence,
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Y2 (L + [v, clu+ uc?[s, D™ [(s + v)(A = B) + P(1 = A)]) [(1 = t)|aspq| + t|asip]]
=1 -0 ZZ, (1 + [v,clp + pe?ls,cD™ [(s + v)(1 = B) + P(1 = A)D)|assp,1]

+t %521 (1 + [v, clu + pe®[s, D™ [(s + v)(1 = B) + P(1 — A)D|asipz|
<(1-t)P(A—B)+tP(A—B) = P(A—B).

Which show that F(z) € Lk, (v, m, A) m

In the subsequent theorem, we get the extreme points of the class Lk, .(v,m, A) .

Theorem (4.4): Let hy(z) = z~F and

P(A-B)
A+[v,clu+uc?[1,c])™[(s+v)(1-B)+P(1-A)]

h(z)=z""+ z5tP, (s = 1).

Then h € Lk, .(v,m, A), if the form may be used:

F(Z) = thO(Z) + 2?:1 wshs(z): (ws = 0' Wo + Zgo=1 ws = 1)- (25)
Proof: We impose
F(z) = woho(2) + X521 wshs(2)

P(A-B)ws S+P
Jutuc?[s,c)™[(s+v)(1-B)+P(1-A)]

— =V )
h(z) =z + ZS=1 (1+[U,C

Then

ZOO (1+[v,clutuc?[s,c)D™[(s+v)(1-B)+P(1-A)]
s=1 P(A-B)

P(A-B)
Ws (1+[v,clu+uc?s,c)D™[(s+v)(1-B)+P(1-A4)]

=2z1ws =1—wo < 1.
So, by Theorem (1), h € Lk, .(v,m, A).

Conversely, we suppose h € Lk, (v, m, A). By (7), we have

P(4-B)
Asip S (A+[v,clu+pucv[s,c])™[(s+v)(1-B)+P(1-A)] 52 0.
Setting
(1+[v,clutuc’[s,c)™[(s+v)(1—-B)+P(1-A)]
ws = P(A_B) asyp, S=0.
And
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wy=1-XZ ws.
Then
h(z) = woho(2) + X521 ws hs(2).
Then
h(z) =277 + L1 asepz”™

P(A-B) S+P
prpc?[s,c)™[(s+v)(1-B)+P(1-A)]

— ,—P 00
=z +ZS=1(1+[17,C]

=z P+ 32 (hs —z D
= Z_P(l - Zg.;l ws) + Z?:l wshg

=z wy + Y52, wsh
h(z) = woh(2) + X5Zo wshs(z) m
Theorem (4.5): Let hy(2), h,(2), ..., h,(z) defined by

hi(z) =277 + X521 A540i 2577, (549 = 0,i = 1,2,..., 1,5 2 0) (26)

be a member of the class Lk, (v,m,A).. Afterward, the mathematical mean of h;(2)(i =

1,2, ..., 1) by means of:
f@ =35 (@) (27)

Is also in the class Lk, (v, m, A).

Proof: By (26), (27) we can write
1 - o
f(Z) = ;ZQL:l(Z v+ Zs:l Astp,i ZS-H;)
f— o0 1
=z7V+ 25:1(; lilzl as+v,i) z57Y,

Since h; € Lk, .(v,m,A) for every (i=1,2,..,u) therefore, using the Theorem (1), we

can prove that

Yzl + [v,clp + puc®[s, cD™[(s + v)(1 = B) + P(1 - A)](% fe1 Gstv,i)
1 u o)
=2 QA+ nclut uelsuD™[(s +0)(1 = B) + P(1 = Dlacay,)

i=1 s=1

1
< t . v(A—-B)=v(A—B).m
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Conclusion

In our present paper, we were essentially motivated by the recent research going on in this field
of study and we have first introduced a class of meromorphic multivalent function with g-
differential operator. We next investigate some useful properties such as coefficient estimates,
growth and distortion theorems, radii of starlikeness and convexity, convex linear combination,
extreme points theorem and the arithmetic mean for the present subclass of meromorphic

multivalent functions.

Finally, we would like to explain that the new in this study that is some geometric properties of
meromorphic multivalent functions for w-differential operator is generalized on starlikeness or

convex functions.
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