Error Analysis of the Classical Artificial Diffusion Weak Galerkin Finite Element Method for the steady state- convection diffusion-reaction Equation in 2-D
DOI:
https://doi.org/10.54153/sjpas.2024.v6i2.893Keywords:
Classical artificial diffusion, Convection Diffusion Reaction problem,Error analysis, stabilityAbstract
In this study, we modified the error in the weak Galerkin method when solving problems in which diffusion is the dominant convection( h) in two dimensions. This is done by adding the artificial diffusion term (-δΔw, where δ=h-ϵ). The finite element method for discrete functions using a weakly defined gradient operator is presented in this study. The concept of the weak discrete gradient is introduced, which plays an important role when using numerical methods to solve partial differential equations. The goal of this study is to enhance the accuracy and stability of the solutions by studying the ellipticity and stability properties of the method, which works to ensure that the numerical method retains the properties of the original equation while reducing the fluctuations occurring with the weak galerkin finite element method. Specific theories have been used to estimate the error in parameters -norm, and . Practical examples demonstrate how this method improves the handling of partial equations characterized by convection-dominated diffusion, enhancing its potential for advancing numerical simulations in engineering and physics.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the SJPAS journal right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in Samarra Journal of Pure and Applied Science.
The Samarra Journal of Pure and Applied Science permits and encourages authors to archive Pre-print and Post-print items submitted to the journal on personal websites or institutional repositories per the author's choice while providing bibliographic details that credit their submission, and publication in this journal. This includes the archiving of a submitted version, an accepted version, or a published version without any Risks.