The Effect of Therapeutic Nutrition Of Omega-3 and Silymarin on the Insulin Hormone in Male Rats with Diabetes

Authors

  • Mustafa Abdul Jabbar Jamel جامعة تكريت
  • Adil Abdulrahman Mustafa Tikrit University

DOI:

https://doi.org/10.54153/sjpas.2025.v7i2.1021

Keywords:

Nutrition, Sugar, Insulin, omega3, silymarin

Abstract

Diabetes is a chronic disease that greatly affects various body functions, and is one of the most prevalent diseases worldwide. Diabetes is associated with several complications that affect individuals’ health and quality of life. Recent studies are investigating the effect of nutritional supplements, such as Omega-3 and Silymarin, in managing insulin levels and reducing complications of the disease through their antioxidant and anti-inflammatory effects. This study was conducted to evaluate the effect of Omega-3 and Silymarin on changes in blood insulin levels in diabetic rats. The rats were divided into different experimental groups, where some groups received treatment with Omega-3 or Silymarin to provide a good understanding of the potential benefits of these supplements in improving the condition of diabetic patients. The results showed that both Omega-3 and Silymarin have positive effects in raising insulin levels in diabetic rats, supporting the possibility of using them as complementary treatments to improve pancreatic function and manage blood sugar levels. Silymarin also showed a stronger effect in raising insulin levels than Omega-3 at different doses, especially at the highest dose. This indicates that Silymarin has an effective role in restoring damaged pancreatic function.

References

1. Shaw, J.E., R.A. Sicree, and P.Z. Zimmet, Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes research and clinical practice, 2010. 87(1): p. 4-14.

2. Unwin, N., D. Gan, and D. Whiting, The IDF Diabetes Atlas: providing evidence, raising awareness and promoting action. Diabetes research and clinical practice, 2010. 87(1): p. 2-3.

3. Guilherme, A., et al., Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature reviews Molecular cell biology, 2008. 9(5): p. 367-377.

4. Yoon, K.-H., et al., Epidemic obesity and type 2 diabetes in Asia. The lancet, 2006. 368(9548): p. 1681-1688.

5. Bell, G.I. and K.S. Polonsky, Diabetes mellitus and genetically programmed defects in β-cell function. Nature, 2001. 414(6865): p. 788-791.

6. Butler, A.E., et al., β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003. 52(1): p. 102-110.

7. Prentki, M. and C.J. Nolan, Islet β cell failure in type 2 diabetes. The Journal of clinical investigation, 2006. 116(7): p. 1802-1812.

8. Calder, P.C., Functional roles of fatty acids and their effects on human health. Journal of parenteral and enteral nutrition, 2015. 39: p. 18S-32S.

9. Sakai, C., et al., Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells. PloS one, 2017. 12(11): p. e0187934.

10. Oppedisano, F., et al., The anti-inflammatory and antioxidant properties of n-3 PUFAs: Their role in cardiovascular protection. Biomedicines, 2020. 8(9): p. 306.

11. Djuricic, I. and P.C. Calder, Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients, 2021. 13(7): p. 2421.

12. Swanson, D., R. Block, and S.A. Mousa, Omega-3 fatty acids EPA and DHA: health benefits throughout life. Advances in nutrition, 2012. 3(1): p. 1-7.

13. Neha, A.S. Jaggi, and N. Singh, Silymarin and its role in chronic diseases. Drug discovery from mother nature, 2016: p. 25-44.

14. Palit, P., A. Mukhopadhyay, and D. Chattopadhyay, Phyto‐pharmacological perspective of Silymarin: A potential prophylactic or therapeutic agent for COVID‐19, based on its promising immunomodulatory, anti‐coagulant and anti‐viral property. Phytotherapy Research, 2021. 35(8): p. 4246-4257.

15. Abenavoli, L., et al., Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytotherapy research, 2018. 32(11): p. 2202-2213.

16. Lv, Y., et al., Spatial organization of silybin biosynthesis in milk thistle [Silybum marianum (L.) Gaertn]. The Plant Journal, 2017. 92(6): p. 995-1004.

17. Bijak, M., Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—Chemistry, bioavailability, and metabolism. Molecules, 2017. 22(11): p. 1942.

18. Dixit, N., et al., Silymarin: A review of pharmacological aspects and bioavailability enhancement approaches. Indian journal of pharmacology, 2007. 39(4): p. 172-179.

19. Elwekeel, A., A. Elfishawy, and S. AbouZid, Silymarin content in Silybum marianum fruits at different maturity stages. Journal of Medicinal Plants Research, 2013. 7(23): p. 1665-1669.

20. Javed, S., K. Kohli, and M. Ali, Reassessing bioavailability of silymarin. Alternative medicine review, 2011. 16(3): p. 239.

21. Sędzikowska, A. and L. Szablewski, Insulin and insulin resistance in Alzheimer’s disease. International journal of molecular sciences, 2021. 22(18): p. 9987.

22. Newsholme, P. and M. Krause, Nutritional regulation of insulin secretion: implications for diabetes. The Clinical Biochemist Reviews, 2012. 33(2): p. 35.

23. Balić, A., et al., Omega-3 versus omega-6 polyunsaturated fatty acids in the prevention and treatment of inflammatory skin diseases. International journal of molecular sciences, 2020. 21(3): p. 741.

24. البياتي, تحديد التأثيرات الكيموحيوية والنسيجية لبعض الأنظمة الغذائية في الفئران المختبرية المصابة بالسكري المستحدث بالألوكسان, رسالة ماجستير كلية الزراعة ، جامعة تكريت ، العراق 2017: .

25. Owoyele, V.B., F.M. Adeyemi, and A.O. Soladoye, Effect of aqueous leaves extract of ocimum gratissimum (sweet basil) on alloxan induced diabetic rats. 2005.

26. محمد, اخرون, and تأثير الكتلة الحيوية الفعالة (EM) في تركيز سكر الدم وعدد من المتغيرات الحيوية في مصل دم ذكور الفأران البيض السليمة والمصابة بداء السكري. مجلة علوم الرافدين, 2010. 22(2).

27. Burtis, C.A. and E.R. Ashwood, Tietz textbook of clinical chemistry. 1994: Amer Assn for Clinical Chemistry.

28. Db, D., Multiple range and multiple F test. Biometrics, 1955. 11: p. 1-42.

29. Anderson, D.R., T.A. Williams, and J.J. Cochran, Statistics for business & economics. 2020: Cengage Learning.

30. Boye, A., et al., Abrus precatorius Leaf Extract Reverses Alloxan/Nicotinamide‐Induced Diabetes Mellitus in Rats through Hormonal (Insulin, GLP‐1, and Glucagon) and Enzymatic (α‐Amylase/α‐Glucosidase) Modulation. BioMed Research International, 2021. 2021(1): p. 9920826.

31. Gomaa, H.F., I.B. Abdelmalek, and K.G. Abdel-Wahhab, The anti-diabetic effect of some plant extracts against Streptozotocin-induced diabetes type 2 in male albino rats. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 2021. 21(8): p. 1431-1440.

32. Zhautikova, S., et al., Clinical and laboratory assessment of hormonal and metabolic disorders in experimental animals with alloxan, streptozotocin and dithizone diabetes. Bulletin of the Karaganda university Biology. Medicine. Geography series, 2023. 111(3): p. 206-215.

33. Palicka, V., Pathophysiology of diabetes mellitus. Ejifcc, 2002. 13(5): p. 140.

34. Banday, M.Z., A.S. Sameer, and S. Nissar, Pathophysiology of diabetes: An overview. Avicenna journal of medicine, 2020. 10(04): p. 174-188.

35. Nagai, Y., et al., Glucotoxicity-induced suppression of Cox6a2 expression provokes β-cell dysfunction via augmented ROS production. Biochemical and Biophysical Research Communications, 2021. 556: p. 134-141.

36. Prentki, M., et al., Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β-cell. Diabetes, 2020. 69(3): p. 279-290.

37. Yaribeygi, H., et al., Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxidative medicine and cellular longevity, 2020(1): p. 8609213.

38. Pavlisova, J., et al., Chronic n-3 fatty acid intake enhances insulin response to oral glucose and elevates GLP-1 in high-fat diet-fed obese mice. Food & function, 2020. 11(11): p. 9764-9775.

39. Sinha, S., et al., The effect of omega-3 fatty acids on insulin resistance. Life, 2023. 13(6): p. 1322.

40. Komal, F., et al., Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model. Journal of Translational Medicine, 2020. 18: p. 1-11.

41. Shibabaw, T., Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Molecular and Cellular Biochemistry, 2021. 476(2): p. 993-1003.

42. Elgarf, A.T., M.M. Mahdy, and N.A. Sabri, Effect of silymarin supplementation on glycemic control, lipid profile and insulin resistance in patients with type 2 diabetes mellitus. Int. J. Adv. Res, 2015. 3: p. 812-821.

43. Ebrahimpour-Koujan, S., et al., Lower glycemic indices and lipid profile among type 2 diabetes mellitus patients who received novel dose of Silybum marianum (L.) Gaertn.(silymarin) extract supplement: A Triple-blinded randomized controlled clinical trial. Phytomedicine, 2018. 44: p. 39-44.

44. Soto, C., et al., Effect of Silymarin in Pdx-1 expression and the proliferation of pancreatic β-cells in a pancreatectomy model. Phytomedicine, 2014. 21(3): p. 233-239.

Downloads

Published

2025-06-30

How to Cite

Abdul Jabbar Jamel, M., & Abdulrahman Mustafa, A. (2025). The Effect of Therapeutic Nutrition Of Omega-3 and Silymarin on the Insulin Hormone in Male Rats with Diabetes. Samarra Journal of Pure and Applied Science, 7(2), 153–161. https://doi.org/10.54153/sjpas.2025.v7i2.1021

Similar Articles

You may also start an advanced similarity search for this article.