Synthesis and Identification of Some New bi-azetidine 2,2ʹ- dione and bi-quinazoline-4,4 ʹ-dione Compounds derived from bis Schiff Base derivatives

Authors

  • Mohammad M. Al- Tufah Ministry of Education

DOI:

https://doi.org/10.54153/sjpas.2025.v7i2.994

Keywords:

Heterocyclic compounds, Schiff bases, Azetidine, Quinazoline, biological activities

Abstract

This research Included the preparation and characterization some derivatives Four and Six membered Heterocyclic Compounds (azetidine-2-one , quinazoline-4-one ). The first step inclode react benzaldehyde dervatives with hydrazine hydrate with appropriate glacial acetic acid  in presence  ethanol as solvent to get 1,2-bis(Substituted-benzylidene)hydrazine (A1-A7). The second step react (A1-A7) with (chloroacetylchloride) in the presence of triethylamine to get 4,4'-bis(substitutedphenyl)-3,3'-dichloro-[1,1'-biazetidine]-2,2'-dione (A8-A14), also react (A1-A7) with (2-amino benzoic acid) to get 2,2'-bis(substitutedphenyl)-1,1',2,2'-tetrahydro-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (A15-A21). The prepared compounds were characterized by some physical properties and melting points in addition to (FT-IR), (1H-NMR), and (13C-NMR) by spectroscopic analysis.                                                                                              

References

Gómez, E., González, B., Calvar, N., Tojo, E., & Domínguez, Á. (2006). Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. Journal of Chemical & Engineering Data, 51(6), 2096-2102.‏ doi: 10.1021/je060228n.

2. Da Silva, C. M., da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V., & de Fátima, Â. (2011). Schiff bases: A short review of their antimicrobial activities. Journal of Advanced research, 2(1), 1-8.‏ doi:10.1016/j.jare.2010.05.004.

3. Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff bases—structure, importance and classification. Molecules, 27(3), 787.‏ doi: 10.3390/molecules27030787.

4. Akila, E., Usharani, M., Vimala, S., & Rajavel, R. (2012). Synthesis, spectroscopic characterization and biological evaluation studies of mixed ligand schiff base with metal (II) complexes derived from o-phenylenediamine. Chemical Science Review and Letters, 1(4), 181-194.‏

5. Sinicropi, M. S., Ceramella, J., Iacopetta, D., Catalano, A., Mariconda, A., Rosano, C., ... & Longo, P. (2022). Metal complexes with Schiff bases: Data collection and recent studies on biological activities. International Journal of Molecular Sciences, 23(23), 14840.‏ doi: 10.3390/ijms232314840.

6. Jorge, J., Del Pino Santos, K. F., Timóteo, F., Piva Vasconcelos, R. R., Ignacio Ayala Cáceres, O., Juliane Arantes Granja, I., ... & Rafique, J. (2024). Recent advances on the antimicrobial activities of Schiff bases and their metal complexes: An updated overview. Current Medicinal Chemistry, 31(17), 2330-2344.‏ doi: 10.2174/0929867330666230224092830.

7. Al Zoubi, W., Al‐Hamdani, A. A. S., Ahmed, S. D., & Ko, Y. G. (2018). Synthesis, characterization, and biological activity of Schiff bases metal complexes. Journal of Physical Organic Chemistry, 31(2), e3752.‏ doi: 10.1002/poc.3752.

8. Çavuşoğlu, B. K., Sağlık, B. N., Osmaniye, D., Levent, S., Acar Çevik, U., Karaduman, A. B., ... & Kaplancıklı, Z. A. (2017). Synthesis and biological evaluation of new thiosemicarbazone derivative schiff bases as monoamine oxidase inhibitory agents. Molecules, 23(1), 60.‏ ‏ doi: 10.3390/molecules23010060.

9. Talluh, A. W. A. S. (2024). Preparation, Characterization, Evaluation of Biological Activity, and Study of Molecular Docking of Azetidine Derivatives. Central Asian Journal of Medical and Natural Science, 5(1), 608-616.‏ doi: 10.17605/cajmns.v5i1.2384.

10. Desai, N. C., Harsora, J. P., Monapara, J. D., & Khedkar, V. M. (2022). Synthesis, antimicrobial capability and molecular docking of heterocyclic scaffolds clubbed by 2-azetidinone, thiazole and quinoline derivatives. Polycyclic Aromatic Compounds, 42(7), 3924-3938.‏ doi: 10.1080/10406638.2021.1877747.

11. Shukla, P., Deswal, D., & Narula, A. K. (2023). Antifungal activity of novel azetidine tethered chitosan synthesized via multicomponent reaction approach. Journal of Medical Mycology, 33(3), 101409.‏ doi: 10.1016/j.mycmed.2023.101409.

12. Ramachandran, S., Vimeshya, N., Yogeshwaran, K., Cheriyan, B. V., & Aanandhi, M. V. (2021). Molecular docking studies, synthesis, characterisation, and evaluation of azetidine-2-one derivative. Research Journal of Pharmacy and Technology, 14(3), 1571-1575.‏ doi: 10.5958/0974-360X.2021.00277.8.

13. Verma, V. A., Saundane, A. R., Meti, R. S., Shamrao, R., & Katkar, V. (2022). Synthesis, biological evaluation and docking studies of some new indolyl-pyridine containing thiazolidinone and azetidinone analogs. Polycyclic aromatic compounds, 42(4), 1545-1559.‏doi: 10.1080/10406638.2020.1786706.

14. Thomas, A. B., Nanda, R. K., Kothapalli, L. P., & Hamane, S. C. (2016). Synthesis and biological evaluation of Schiff’s bases and 2-azetidinones of isonocotinyl hydrazone as potential antidepressant and nootropic agents. Arabian Journal of Chemistry, 9, S79-S90.‏ doi: 10.1016/j.arabjc.2011.02.015.

15. Ramachandran, S., Cheriyan, B. V., & Aanandhi, M. V. (2021). Activities of thiazolidine-4-one and azetidine-2-one derivatives-A review. Research Journal of Pharmacy and Technology, 14(8), 4513-4516.‏ doi: 10.52711/0974-360X.2021.00785.

16. Kumar, S., Kaur, H., & Kumar, A. (2012). Synthesis of new azetidinonyl/thiazolidinonyl quinazolinone derivatives as antiparkinsonian agents. Arabian Journal of Chemistry, 5(4), 475-484.‏ doi: 10.1016/j.arabjc.2010.09.014.

17. Mehta, P. D., Sengar, N. P., & Pathak, A. K. (2010). 2-Azetidinone–a new profile of various pharmacological activities. European journal of medicinal chemistry, 45(12), 5541-5560.‏ doi: 10.1016/j.ejmech.2010.09.035.

18. Vaccaro, W. D., & Davis Jr, H. R. (1998). Sugar-substituted 2-azetidinone cholesterol absorption inhibitors: enhanced potency by modification of the sugar. Bioorganic & medicinal chemistry letters, 8(3), 313-318.‏ doi: 10.1016/S0960-894X(98)00008-0.

19. Rajasekaran, A., Periasamy, M., & Venkatesan, S. (2010). Synthesis, characterization and biological activity of some novel azetidinones. J. Dev. Biol. Tissue Eng, 2(1), 5-13.‏ doi: 10.5897/JDBTE.9000024.

20. Mahato, A. K., Srivastava, B., & Nithya, S. (2011). Chemistry, structure activity relationship and biological activity of quinazoline-4 (3H)-one derivatives. Inventi Rapid Med Chem, 2(1), 13-19.‏

21. Singh, P., Rathi, P., Singhal, S., & Rajput, C. S. (2022). Chemistry of Quinazolin-4 (3H)-ones and their Antiinflammatory activity: A Review. International Journal of Pharmaceutical Research (09752366), 14(3).‏ doi: 10.31838/ijpr/2022.14.03.006.

22. Kuneš, J., Bažant, J., Pour, M., Waisser, K., Šlosárek, M., & Janota, J. (2000). Quinazoline derivatives with antitubercular activity. Il Farmaco, 55(11-12), 725-729.‏ doi: 10.1016/S0014-827X(00)00100-2.

23. Reddy, M. M., & Sivaramakrishna, A. (2020). Remarkably flexible quinazolinones—synthesis and biological applications. Journal of Heterocyclic Chemistry, 57(3), 942-954.‏ doi: 10.1002/jhet.3844.

24. Crocetti, L., Khlebnikov, A. I., Guerrini, G., Schepetkin, I. A., Melani, F., Giovannoni, M. P., & Quinn, M. T. (2024). Anti-Inflammatory Activity of Pyrazolo [1, 5-a] quinazolines. Molecules, 29(11), 2421.‏ doi: 10.3390/molecules29112421.

25. Ghorab, M. M., Abdel-Gawad, S. M., & El-Gaby, M. S. A. (2000). Synthesis and evaluation of some new fluorinated hydroquinazoline derivatives as antifungal agents. Il Farmaco, 55(4), 249-255.‏ doi: 10.1016/S0014-827X(00)00029-X.

26. Patel, N. B., & Patel, J. C. (2011). Synthesis and antimicrobial activity of Schiff bases and 2-azetidinones derived from quinazolin-4 (3H)-one. Arabian Journal of Chemistry, 4(4), 403-411.‏ doi: 10.1016/j.arabjc.2010.07.005.

27. Raffa, D., Daidone, G., Maggio, B., Cascioferro, S., Plescia, F., & Schillaci, D. (2004). Synthesis and antileukemic activity of new 3-(5-methylisoxazol-3-yl) and 3-(pyrimidin-2-yl)-2-styrylquinazolin-4 (3H)-ones. Il Farmaco, 59(6), 451-455.‏ doi: 10.1016/j.farmac.2003.10.006.

28. Agarwal, K. C., Sharma, V., Shakya, N., & Gupta, S. (2009). Design and synthesis of novel substituted quinazoline derivatives as antileishmanial agents. Bioorganic & medicinal chemistry letters, 19(18), 5474-5477.‏ doi: 10.1016/j.bmcl.2009.07.081.

29. Pele, R., Marc, G., Ionuț, I., Nastasă, C., Fizeșan, I., Pîrnău, A., ... & Oniga, O. (2022). Antioxidant and Cytotoxic Activity of New Polyphenolic Derivatives of Quinazolin-4 (3H)-one: Synthesis and In Vitro Activities Evaluation. Pharmaceutics, 15(1), 136.‏ doi: 10.3390/pharmaceutics15010136.

30. Mendogralo, E. Y., Nesterova, L. Y., Nasibullina, E. R., Shcherbakov, R. O., Tkachenko, A. G., Sidorov, R. Y., ... & Uchuskin, M. G. (2023). The Synthesis and Biological Evaluation of 2-(1 H-Indol-3-yl) quinazolin-4 (3 H)-One Derivatives. Molecules, 28(14), 5348.‏ doi: 10.3390/molecules28145348.

31. Chandra Pariyar, G., Mitra, B., Mukherjee, S., & Ghosh, P. (2020). Ascorbic Acid as an Efficient Organocatalyst for the Synthesis of 2‐Substituted‐2, 3‐dihydroquinazolin‐4 (1H)‐one and 2‐Substituted Quinazolin‐4 (3H)‐one in Water. ChemistrySelect, 5(1), 104-108.‏ https://doi.org/10.1002/slct.201903937.

32. Shah, R., Rathore, D., Khan, F., Deshmukh, N., & Pillai, S. (2017). Synthesis and Antibacterial Activity of Some New Substituted Azetidne Derivatives. . Journal of Drug Delivery and Therapeutics, 7(7), 113-115. ‏ doi: 10.22270/jddt.v7i7.1604.

33. Gupta, A., & Halve, A. K. (2015). Synthesis & antifungal screening of novel azetidin-2-ones. Open Chemistry Journal, 2(1).‏ doi: 10.2174/1874842201502010001.

34. Ibrahim, H., AL-Majidi, S. M., & Al-issa, Y. A. (2020). Synthesis, and identification. of some, new N.-substituted quinazoline-. 4-one, thiazine-4-. one and, tetrazoline rings, incorporating. N-ethyl-2-(benzylthio), benzimidazole acetate, and: study, their, application, as: anti-oxidant, agent. International Journal, of. Pharmaceutical. Research, 12(3).‏

35. Pitts, C. R., & Lectka, T. (2014). Chemical synthesis of β-lactams: asymmetric catalysis and other recent advances. Chemical Reviews, 114(16), 7930-7953. doi :10.1021/cr4005549‏

36. Asif, M. (2014). Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. International journal of medicinal chemistry, 2014(1), 395637.‏ doi.: 10.1155/2014/395637

37. Omar, A. Z., El-Atawy, M. A., Alsubaie, M. S., Alazmi, M. L., Ahmed, H. A., & Hamed, E. A. (2023). Synthesis and computational investigations of new thioether/azomethine liquid crystal derivatives. Crystals, 13(3), 378.‏ doi: 10.3390/cryst13030378.

38. Layim, M. D., & Magtoof, M. S. (2022). Material design and biologically activity of some new azetidines and azetidine-2-ones as antioxident. Materials Today: Proceedings, 61, 878-886.‏ doi: 10.1016/j.matpr.2021.09.462.

Downloads

Published

2025-06-30

How to Cite

Mohammad M. Al- Tufah. (2025). Synthesis and Identification of Some New bi-azetidine 2,2ʹ- dione and bi-quinazoline-4,4 ʹ-dione Compounds derived from bis Schiff Base derivatives. Samarra Journal of Pure and Applied Science, 7(2), 56–76. https://doi.org/10.54153/sjpas.2025.v7i2.994

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.