Synthesis and Identification of Some New bi-azetidine 2,2ʹ- dione and bi-quinazoline-4,4 ʹ-dione Compounds derived from bis Schiff Base derivatives
DOI:
https://doi.org/10.54153/sjpas.2025.v7i2.994Keywords:
Heterocyclic compounds, Schiff bases, Azetidine, Quinazoline, biological activitiesAbstract
This research Included the preparation and characterization some derivatives Four and Six membered Heterocyclic Compounds (azetidine-2-one , quinazoline-4-one ). The first step inclode react benzaldehyde dervatives with hydrazine hydrate with appropriate glacial acetic acid in presence ethanol as solvent to get 1,2-bis(Substituted-benzylidene)hydrazine (A1-A7). The second step react (A1-A7) with (chloroacetylchloride) in the presence of triethylamine to get 4,4'-bis(substitutedphenyl)-3,3'-dichloro-[1,1'-biazetidine]-2,2'-dione (A8-A14), also react (A1-A7) with (2-amino benzoic acid) to get 2,2'-bis(substitutedphenyl)-1,1',2,2'-tetrahydro-4H,4'H-[3,3'-biquinazoline]-4,4'-dione (A15-A21). The prepared compounds were characterized by some physical properties and melting points in addition to (FT-IR), (1H-NMR), and (13C-NMR) by spectroscopic analysis.
References
Gómez, E., González, B., Calvar, N., Tojo, E., & Domínguez, Á. (2006). Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. Journal of Chemical & Engineering Data, 51(6), 2096-2102. doi: 10.1021/je060228n.
2. Da Silva, C. M., da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V., & de Fátima, Â. (2011). Schiff bases: A short review of their antimicrobial activities. Journal of Advanced research, 2(1), 1-8. doi:10.1016/j.jare.2010.05.004.
3. Raczuk, E., Dmochowska, B., Samaszko-Fiertek, J., & Madaj, J. (2022). Different Schiff bases—structure, importance and classification. Molecules, 27(3), 787. doi: 10.3390/molecules27030787.
4. Akila, E., Usharani, M., Vimala, S., & Rajavel, R. (2012). Synthesis, spectroscopic characterization and biological evaluation studies of mixed ligand schiff base with metal (II) complexes derived from o-phenylenediamine. Chemical Science Review and Letters, 1(4), 181-194.
5. Sinicropi, M. S., Ceramella, J., Iacopetta, D., Catalano, A., Mariconda, A., Rosano, C., ... & Longo, P. (2022). Metal complexes with Schiff bases: Data collection and recent studies on biological activities. International Journal of Molecular Sciences, 23(23), 14840. doi: 10.3390/ijms232314840.
6. Jorge, J., Del Pino Santos, K. F., Timóteo, F., Piva Vasconcelos, R. R., Ignacio Ayala Cáceres, O., Juliane Arantes Granja, I., ... & Rafique, J. (2024). Recent advances on the antimicrobial activities of Schiff bases and their metal complexes: An updated overview. Current Medicinal Chemistry, 31(17), 2330-2344. doi: 10.2174/0929867330666230224092830.
7. Al Zoubi, W., Al‐Hamdani, A. A. S., Ahmed, S. D., & Ko, Y. G. (2018). Synthesis, characterization, and biological activity of Schiff bases metal complexes. Journal of Physical Organic Chemistry, 31(2), e3752. doi: 10.1002/poc.3752.
8. Çavuşoğlu, B. K., Sağlık, B. N., Osmaniye, D., Levent, S., Acar Çevik, U., Karaduman, A. B., ... & Kaplancıklı, Z. A. (2017). Synthesis and biological evaluation of new thiosemicarbazone derivative schiff bases as monoamine oxidase inhibitory agents. Molecules, 23(1), 60. doi: 10.3390/molecules23010060.
9. Talluh, A. W. A. S. (2024). Preparation, Characterization, Evaluation of Biological Activity, and Study of Molecular Docking of Azetidine Derivatives. Central Asian Journal of Medical and Natural Science, 5(1), 608-616. doi: 10.17605/cajmns.v5i1.2384.
10. Desai, N. C., Harsora, J. P., Monapara, J. D., & Khedkar, V. M. (2022). Synthesis, antimicrobial capability and molecular docking of heterocyclic scaffolds clubbed by 2-azetidinone, thiazole and quinoline derivatives. Polycyclic Aromatic Compounds, 42(7), 3924-3938. doi: 10.1080/10406638.2021.1877747.
11. Shukla, P., Deswal, D., & Narula, A. K. (2023). Antifungal activity of novel azetidine tethered chitosan synthesized via multicomponent reaction approach. Journal of Medical Mycology, 33(3), 101409. doi: 10.1016/j.mycmed.2023.101409.
12. Ramachandran, S., Vimeshya, N., Yogeshwaran, K., Cheriyan, B. V., & Aanandhi, M. V. (2021). Molecular docking studies, synthesis, characterisation, and evaluation of azetidine-2-one derivative. Research Journal of Pharmacy and Technology, 14(3), 1571-1575. doi: 10.5958/0974-360X.2021.00277.8.
13. Verma, V. A., Saundane, A. R., Meti, R. S., Shamrao, R., & Katkar, V. (2022). Synthesis, biological evaluation and docking studies of some new indolyl-pyridine containing thiazolidinone and azetidinone analogs. Polycyclic aromatic compounds, 42(4), 1545-1559.doi: 10.1080/10406638.2020.1786706.
14. Thomas, A. B., Nanda, R. K., Kothapalli, L. P., & Hamane, S. C. (2016). Synthesis and biological evaluation of Schiff’s bases and 2-azetidinones of isonocotinyl hydrazone as potential antidepressant and nootropic agents. Arabian Journal of Chemistry, 9, S79-S90. doi: 10.1016/j.arabjc.2011.02.015.
15. Ramachandran, S., Cheriyan, B. V., & Aanandhi, M. V. (2021). Activities of thiazolidine-4-one and azetidine-2-one derivatives-A review. Research Journal of Pharmacy and Technology, 14(8), 4513-4516. doi: 10.52711/0974-360X.2021.00785.
16. Kumar, S., Kaur, H., & Kumar, A. (2012). Synthesis of new azetidinonyl/thiazolidinonyl quinazolinone derivatives as antiparkinsonian agents. Arabian Journal of Chemistry, 5(4), 475-484. doi: 10.1016/j.arabjc.2010.09.014.
17. Mehta, P. D., Sengar, N. P., & Pathak, A. K. (2010). 2-Azetidinone–a new profile of various pharmacological activities. European journal of medicinal chemistry, 45(12), 5541-5560. doi: 10.1016/j.ejmech.2010.09.035.
18. Vaccaro, W. D., & Davis Jr, H. R. (1998). Sugar-substituted 2-azetidinone cholesterol absorption inhibitors: enhanced potency by modification of the sugar. Bioorganic & medicinal chemistry letters, 8(3), 313-318. doi: 10.1016/S0960-894X(98)00008-0.
19. Rajasekaran, A., Periasamy, M., & Venkatesan, S. (2010). Synthesis, characterization and biological activity of some novel azetidinones. J. Dev. Biol. Tissue Eng, 2(1), 5-13. doi: 10.5897/JDBTE.9000024.
20. Mahato, A. K., Srivastava, B., & Nithya, S. (2011). Chemistry, structure activity relationship and biological activity of quinazoline-4 (3H)-one derivatives. Inventi Rapid Med Chem, 2(1), 13-19.
21. Singh, P., Rathi, P., Singhal, S., & Rajput, C. S. (2022). Chemistry of Quinazolin-4 (3H)-ones and their Antiinflammatory activity: A Review. International Journal of Pharmaceutical Research (09752366), 14(3). doi: 10.31838/ijpr/2022.14.03.006.
22. Kuneš, J., Bažant, J., Pour, M., Waisser, K., Šlosárek, M., & Janota, J. (2000). Quinazoline derivatives with antitubercular activity. Il Farmaco, 55(11-12), 725-729. doi: 10.1016/S0014-827X(00)00100-2.
23. Reddy, M. M., & Sivaramakrishna, A. (2020). Remarkably flexible quinazolinones—synthesis and biological applications. Journal of Heterocyclic Chemistry, 57(3), 942-954. doi: 10.1002/jhet.3844.
24. Crocetti, L., Khlebnikov, A. I., Guerrini, G., Schepetkin, I. A., Melani, F., Giovannoni, M. P., & Quinn, M. T. (2024). Anti-Inflammatory Activity of Pyrazolo [1, 5-a] quinazolines. Molecules, 29(11), 2421. doi: 10.3390/molecules29112421.
25. Ghorab, M. M., Abdel-Gawad, S. M., & El-Gaby, M. S. A. (2000). Synthesis and evaluation of some new fluorinated hydroquinazoline derivatives as antifungal agents. Il Farmaco, 55(4), 249-255. doi: 10.1016/S0014-827X(00)00029-X.
26. Patel, N. B., & Patel, J. C. (2011). Synthesis and antimicrobial activity of Schiff bases and 2-azetidinones derived from quinazolin-4 (3H)-one. Arabian Journal of Chemistry, 4(4), 403-411. doi: 10.1016/j.arabjc.2010.07.005.
27. Raffa, D., Daidone, G., Maggio, B., Cascioferro, S., Plescia, F., & Schillaci, D. (2004). Synthesis and antileukemic activity of new 3-(5-methylisoxazol-3-yl) and 3-(pyrimidin-2-yl)-2-styrylquinazolin-4 (3H)-ones. Il Farmaco, 59(6), 451-455. doi: 10.1016/j.farmac.2003.10.006.
28. Agarwal, K. C., Sharma, V., Shakya, N., & Gupta, S. (2009). Design and synthesis of novel substituted quinazoline derivatives as antileishmanial agents. Bioorganic & medicinal chemistry letters, 19(18), 5474-5477. doi: 10.1016/j.bmcl.2009.07.081.
29. Pele, R., Marc, G., Ionuț, I., Nastasă, C., Fizeșan, I., Pîrnău, A., ... & Oniga, O. (2022). Antioxidant and Cytotoxic Activity of New Polyphenolic Derivatives of Quinazolin-4 (3H)-one: Synthesis and In Vitro Activities Evaluation. Pharmaceutics, 15(1), 136. doi: 10.3390/pharmaceutics15010136.
30. Mendogralo, E. Y., Nesterova, L. Y., Nasibullina, E. R., Shcherbakov, R. O., Tkachenko, A. G., Sidorov, R. Y., ... & Uchuskin, M. G. (2023). The Synthesis and Biological Evaluation of 2-(1 H-Indol-3-yl) quinazolin-4 (3 H)-One Derivatives. Molecules, 28(14), 5348. doi: 10.3390/molecules28145348.
31. Chandra Pariyar, G., Mitra, B., Mukherjee, S., & Ghosh, P. (2020). Ascorbic Acid as an Efficient Organocatalyst for the Synthesis of 2‐Substituted‐2, 3‐dihydroquinazolin‐4 (1H)‐one and 2‐Substituted Quinazolin‐4 (3H)‐one in Water. ChemistrySelect, 5(1), 104-108. https://doi.org/10.1002/slct.201903937.
32. Shah, R., Rathore, D., Khan, F., Deshmukh, N., & Pillai, S. (2017). Synthesis and Antibacterial Activity of Some New Substituted Azetidne Derivatives. . Journal of Drug Delivery and Therapeutics, 7(7), 113-115. doi: 10.22270/jddt.v7i7.1604.
33. Gupta, A., & Halve, A. K. (2015). Synthesis & antifungal screening of novel azetidin-2-ones. Open Chemistry Journal, 2(1). doi: 10.2174/1874842201502010001.
34. Ibrahim, H., AL-Majidi, S. M., & Al-issa, Y. A. (2020). Synthesis, and identification. of some, new N.-substituted quinazoline-. 4-one, thiazine-4-. one and, tetrazoline rings, incorporating. N-ethyl-2-(benzylthio), benzimidazole acetate, and: study, their, application, as: anti-oxidant, agent. International Journal, of. Pharmaceutical. Research, 12(3).
35. Pitts, C. R., & Lectka, T. (2014). Chemical synthesis of β-lactams: asymmetric catalysis and other recent advances. Chemical Reviews, 114(16), 7930-7953. doi :10.1021/cr4005549
36. Asif, M. (2014). Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. International journal of medicinal chemistry, 2014(1), 395637. doi.: 10.1155/2014/395637
37. Omar, A. Z., El-Atawy, M. A., Alsubaie, M. S., Alazmi, M. L., Ahmed, H. A., & Hamed, E. A. (2023). Synthesis and computational investigations of new thioether/azomethine liquid crystal derivatives. Crystals, 13(3), 378. doi: 10.3390/cryst13030378.
38. Layim, M. D., & Magtoof, M. S. (2022). Material design and biologically activity of some new azetidines and azetidine-2-ones as antioxident. Materials Today: Proceedings, 61, 878-886. doi: 10.1016/j.matpr.2021.09.462.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the SJPAS journal right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in Samarra Journal of Pure and Applied Science.
The Samarra Journal of Pure and Applied Science permits and encourages authors to archive Pre-print and Post-print items submitted to the journal on personal websites or institutional repositories per the author's choice while providing bibliographic details that credit their submission, and publication in this journal. This includes the archiving of a submitted version, an accepted version, or a published version without any Risks.



