The Novel Odd Generalized Exponential-G Family: Statistical Properties and Applications

Authors

  • Murtadha M.Jasim tikrit university
  • Moudher Kh. Abdal-hammed tikrit university
  • Mizal H Alobaidi tikrit university

DOI:

https://doi.org/10.54153/sjpas.2025.v7i2.1018

Keywords:

OGE-G family, inverse Weibull (IW) Distribution, Hazard Function, Moments, MLE

Abstract

This article presents The Novel Odd Generalized Exponential-G family (NOGE-G), a recently discovered distribution family. The statistical properties of a new family, which includes the following, have been studied. survival function and hazard function. We considered the cumulative hazard function, its moments, the characteristic function, the quantile function, and renyi entropy. Also considered was the estimate from the Maximum Likelihood method for parameter estimation. We expanded and combined the inverse Weibull (IW) distribution with it to explore the asymptotic behaviour of the estimates under the estimating method. This resulted in a new extended distribution, which we then simulated using Monte Carlo simulations to estimate the unknown parameters The OGEIW distribution is shown to be genuinely practical and beneficial by its application to two actual data sets.

References

1. Alizadeh, M., Altun, E., Afify, A. Z., & Ozel, G. (2018). The extended odd Weibull-G family: properties and applications. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 161-186.‏

2. Cordeiro, G.M., A_fy, A.Z., Ortega, E.M.M., Suzuki, A.K. and Mead, M.E. (2019). The odd Lomax generator of distributions: properties, estimation, and applications. Journal of Computational and Applied Mathematics, 347, 222-237.

3. Afify, A. Z., & Alizadeh, M. (2020). The odd Dagum family of distributions: Properties and applications. J. Appl. Probab. Stat, 15(1), 45-72.‏

4. Al-Moisheer, A. S., Elbatal, I., Almutiry, W., & Elgarhy, M. (2021). Odd inverse power generalized Weibull generated family of distributions: Properties and applications. Mathematical Problems in Engineering, 2021, 1-17.

5. Rasekhi, M., Altun, E., Alizadeh, M., & Yousof, H. M. (2022). The odd log-logistic Weibull-G family of distributions with regression and financial risk models. Journal of the Operations Research Society of China, 10(1), 133-158.‏

6. Jamal, F., Handique, L., Ahmed, A. H. N., Khan, S., Shafiq, S., & Marzouk, W. (2022). The generalized odd linear exponential family of distributions with applications to reliability theory. Mathematical and Computational Applications, 27(4), 55.‏

7. Suleiman, A. A., Daud, H., Othman, M., Ishaq, A. I., Indawati, R., Abdullah, M. L., & Husin, A. (2023, April). The odd beta prime-G family of probability distributions: properties and applications to engineering and environmental data. In Computer Sciences & Mathematics Forum (Vol. 7, No. 1, p. 20). MDPI.‏

8. Suleiman, A. A., Daud, H., Singh, N. S. S., Othman, M., Ishaq, A. I., & Sokkalingam, R. (2023). A novel odd beta prime-logistic distribution: desirable mathematical properties and applications to engineering and environmental data. Sustainability, 15(13), 10239.‏

9. Ramadan, A. T., Tolba, A. H., & El-Desouky, B. S. (2021). Generalized power Akshaya distribution and its applications. Open Journal of Modelling and Simulation, 9(4), 323-338.‏

10. Tolba, A. H., Muse, A. H., Fayomi, A., Baaqeel, H. M., & Almetwally, E. M. (2023). The Gull Alpha Power Lomax distributions: Properties, simulation, and applications to modeling COVID-19 mortality rates. Plos one, 18(9), e0283308.‏

11. Shala, M., & Merovci, F. (2024). A New Three-Parameter Inverse Rayleigh Distribution: Simulation and Application to Real Data. Symmetry, 16(5), 634.‏

12. Udhayakumar, M., Hamad, Jeyasimman, D., Reddy, G. N., & Anbu, C. (2023, August). Research on Quality Control of Core Process of Hydraulic Engineering Materials Based on Improved Particle Swarm Optimization. In 2023 Second International Conference On Smart Technologies For Smart Nation (SmartTechCon) (pp. 383-388). IEEE.‏.‏

13. Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63-79.

14. Leelavathi, R., Manikandan, N., Senkumar, M. R., Thejasree, P., & Jain, S. K. (2023, August). Mechanical Properties Test of Graphene Concrete Based on Fuzzy Control Algorithm. In 2023 Second International Conference On Smart Technologies For Smart Nation (SmartTechCon) (pp. 164-168). IEEE.‏.‏

15. Abdalhammed, M. K., & Munef, D. M. (2023). Study the properties of Chen-Rayleigh distribution with application. Tikrit Journal of Administrative and Economic Sciences, 19(64 part 2).‏

16. Khalaf, N. S., Hameed, A., Kh, M., Khaleel, M. A., & Abdullah, Z. M. (2022). The Topp Leone flexible Weibull distribution: an extension of the flexible Weibull distribution. International Journal of Nonlinear Analysis and Applications, 13(1), 2999-3010.‏

17. Hassan, A. S., Khaleel, M. A., & Mohamd, R. E. (2021). An extension of exponentiated Lomax distribution with application to lifetime data. Thailand Statistician, 19(3), 484-500.‏

18. Khaleel, M. A., Abdulwahab, A. M., Gaftan, A. M., & Abdal-hammed, M. K. (2022). A new [0, 1] truncated inverse Weibull rayleigh distribution properties with application to COVID-19. International Journal of Nonlinear Analysis and Applications, 13(1), 2933-2946.‏

19. Khubaz, A. F., Abdal-Hameed, M. K., Mohamood, N. H., & Khaleel, M. A. (2023). Gompertz Inverse Weibull Distribution, some statistical properties with Application Real Dataset. Tikrit Journal of Administration and Economics Sciences. 19(Special Issue part 5).

20. Khalaf, A., Yusur, K., & Khaleel, M. (2023). [0, 1] Truncated Exponentiated Exponential Inverse Weibull Distribution with Applications of Carbon Fiber and COVID-19 Data. Journal of Al-Rafidain University College For Sciences. (Print ISSN: 1681-6870, Online ISSN: 2790-2293), (1), 387-399.

21. M. S. Khan, (2010). “The beta inverse Weibull distribution,” International Transactions in Mathematical Sciences and Computer. 3(1), 113–119.

22. M. Q. Shahbaz, S. Shahbaz, and N. S. Butt, (2012). “The Kumaraswamy–Inverse Weibull Distribution,” Pak. J. Stat. Oper. Res. 8 (3), 479-489.

23. M. Pararai, G. Warahena-Liyanage, and B. O. Oluyede, (2014). “A new class of generalized inverse Weibull distribution with applications,” Journal of Applied Mathematics and Bioinformatics. 4(2).

24. Khalaf, A. A. (2024). The New Strange Generalized Rayleigh Family: Characteristics and Applications to COVID-19 Data. Iraqi Journal For Computer Science and Mathematics, 5(3), 92-107.‏

25. Bhat, A. A., Ahmad, S. P., Almetwally, E. M., Yehia, N., Alsadat, N., & Tolba, A. H. (2023). The odd lindley power rayleigh distribution: properties, classical and bayesian estimation with applications. Scientific African. 20, e01736.

26. Afify, A. Z., Gemeay, A. M., & Ibrahim, N. A. (2020). The heavy-tailed exponential distribution: risk measures, estimation, and application to actuarial data. Mathematics, 8(8), 1276.‏

Downloads

Published

2025-06-30

How to Cite

M.Jasim, M., Abdal-hammed , M. K., & Alobaidi, M. H. (2025). The Novel Odd Generalized Exponential-G Family: Statistical Properties and Applications. Samarra Journal of Pure and Applied Science, 7(2), 199–216. https://doi.org/10.54153/sjpas.2025.v7i2.1018

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.