Using titanium nanotubes as photocatalysts in the photodegradation process of crystal violet dye
DOI:
https://doi.org/10.54153/sjpas.2025.v7i2.1025Keywords:
Titanium dioxide, photodegradation, crystal violet, photocatalysis, reaction kineticsAbstract
In this study, titanium dioxide nanotubes were prepared using the electrochemical method (anodization), using an electrochemical cell in which both electrodes (cathode and anode) were made of titanium plates and an electrolyte solution consisting of (ethylene glycol + ammonium fluoride + ionic water) and using a voltage of 65 V (( The nanostructure of the prepared titanium tubes was determined using a scanning electron microscope (SEM). The average diameter of the prepared titanium tubes was 88.25 nanometers. The prepared nanotubes were also applied in the process of photocdegradation of crystal violet dye, where the factors affecting the photodegradation process were studied, such as the intensity of the light source, pH, and the initial concentration of organic dyes. The titanium dioxide tubes used showed a great ability to remove dyes from water, as the percentage of photodegradation of the dye reached Crystal violet 78.9%. The study of the effect of the acid function showed that the percentage of photodegradation increases with an increase in the acid function. The results of the study of the difference in the initial concentration of the dye on the percentage of photodegradation showed that the percentage of photodegradation decreases with the increase of the initial concentration of the dye. It is clear from the study that the kinetics of photodegradation For crystal violet dye using titanium dioxide tubes as a catalyst, the pseudo-first order equation follows.
References
Haider, A. J., Jameel, Z. N., & Al-Hussaini, I. H. (2019). Review on: titanium dioxide applications. Energy Procedia, 157, 17-29. doi: 10.1016/j.egypro.2018.11.159
[2] Bernauer, U., Bodin, L., Chaudhry, Q., Coenraads, P. J., Dusinska, M., Ezendam, J., ... & Von Goetz, N. (2020). SCCS OPINION on Titanium dioxide (TiO2) used in cosmetic products that lead to exposure by inhalation-SCCS/1617/20, Final Opinion. doi:10.2875/559843
[3] Musial, J., Krakowiak, R., Mlynarczyk, D. T., Goslinski, T., & Stanisz, B. J. (2020). Titanium dioxide nanoparticles in food and personal care products—What do we know about their safety?. Nanomaterials, 10(6), 1110. doi: 10.3390/nano10061110).
[4] Braga, A. S., Abdelbary, M. M. H., Kim, R. R., Melo, F. P. D. S. R. D., Saldanha, L. L., Dokkedal, A. L., ... & Magalhães, A. C. (2022). The effect of toothpastes containing natural extracts on bacterial species of a microcosm biofilm and on enamel caries development. Antibiotics, 11(3), 414. doi.org/10.3390/antibiotics11030414
[5] Dal Santo V, Naldoni A.(2018). Titanium Dioxide Photocatalysis. Catalysts.; 8(12):591.10-13 https://doi.org/10.3390/catal8120591
.[6] Kumar, A., & Pandey, G. (2018). Different methods used for the synthesis of TiO2 based nanomaterials: a review. Am. J. Nano Res. Appl, 6(1), 1.doi: 10.11648/j.nano.20180601.11
. [7] Indira, K., Kamachi Mudali, U., & Rajendran, N. (2017). Development of self-assembled titania nanopore arrays for orthopedic applications. Journal of Bio-and Tribo-Corrosion, 3, 1-15. doi: 10.1007/s40735-016-0068-6
[8] Hasanzadeh Kafshgari, M., Kah, D., Mazare, A., Nguyen, N. T., Distaso, M., Peukert, W., ... & Fabry, B. (2019). Anodic titanium dioxide nanotubes for magnetically guided therapeutic delivery. Scientific Reports, 9(1), 13439. doi.org/10.1038/s41598-019-49513-2
[9] S. P . Albu , "Ph. D. Thesis " University of Erlangen-Nuremberg ,Germany,(2012).
[10] Sivaprakash, V., & Narayanan, R. (2021, February). Surface modification TiO2 nanotubes on titanium for biomedical application. Materials science forum . 1019,. 157-163). Trans Tech Publications Ltd. doi: 10.4028/www.scientific.net/MSF.1019.157
[11] Lettieri, S., Pavone, M., Fioravanti, A., Santamaria Amato, L., & Maddalena, P. (2021). Charge carrier processes and optical properties in TiO2 and TiO2-based heterojunction photocatalysts: A review. Materials, 14(7), 1645. doi.org/10.3390/ma14071645
[12] Abood, M. I., & Al-Abdullah, Z. T. (2023). The possibility of using TiO2 Nanotube Arrays an adsorbent for removing lead ions from aqueous solutions. Mesopotamian Journal of Marine Sciences, 38(1), 21-32.doi: https://doi.org/10.58629/mjms.v38i1.224
[13] Serpone, N., & Emeline, A. V. (2002). Suggested terms and definitions in photocatalysis and radiocatalysis. International journal of photoenergy, 4(3), 91-131. doi: https://doi.org/10.1155/S1110662X02000144
[14] Ibrahim, R. K., Hayyan, M., AlSaadi, M. A., Hayyan, A., & Ibrahim, S. (2016). Environmental application of nanotechnology: air, soil, and water. Environmental Science and Pollution Research, 23, 13754-13788.doi: https://doi.org/10.1007/s11356-016-6457-z
[15] Jamjoum, H. A. A., Umar, K., Adnan, R., Razali, M. R., & Mohamad Ibrahim, M. N. (2021). Synthesis, characterization, and photocatalytic activities of graphene oxide/metal oxides nanocomposites: A review. Frontiers in Chemistry, 9,1-24. 752276. doi.org/10.3389/fchem.2021.752276
[16] Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10(4), 100262.doi: 10.1016/j.ceja.2022.100262
[17] Mishra, D., & Srivastava, M. (2020). Low-dimensional nanomaterials for the photocatalytic degradation of organic pollutants. In Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants (15-38). Elsevier. doi: 10.1016/B978-0-12-818598-8.00002-X
[18] Lai, C. W., Juan, J. C., Ko, W. B., & Bee Abd Hamid, S. (2014). An overview: recent development of titanium oxide nanotubes as photocatalyst for dye degradation. International Journal of Photoenergy, 2014(1), 524135. http://dx.doi.org/10.1155/2014/524135
[19] Bavykin, D. V., & Walsh, F. C. (2009). Titanate and titania nanotubes: synthesis. Royal Society of Chemistry.
[20] S. Q. Ibrahim " M.Sc. thesis" , University of Basrah -Iraq , (2020).
[21] Neupane, M. P., Park, I. S., Bae, T. S., Yi, H. K., Watari, F., & Lee, M. H. (2011). Synthesis and morphology of TiO2 nanotubes by anodic oxidation using surfactant based fluorinated electrolyte. Journal of the Electrochemical Society, 158(8), C242. doi: 10.1149/1.3598164
[22] Adam, R. E., Pozina, G., Willander, M., & Nur, O. (2018). Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photonics and Nanostructures-Fundamentals and Applications, 32, 11-18. doi: 10.1016/j.photonics.2018.08.005
[23] Hussein F. H. ,(2012). Photochemical Treatments of Textile Industries Wastewater. Asian Journal of Chemistry , 24(12) 5427-5434.7
[24] Alkaykh, S., Mbarek, A., & Ali-Shattle, E. E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03663
[25] Ahmad, W., Khan, A., Ali, N., Khan, S., Uddin, S., Malik, S., ... & Bilal, M. (2021). Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environmental Science and Pollution Research, 28, 8074-8087.doi: 10.1007/s11356-020-10898-7
[26] Sanakousar, M. F., Vidyasagar, C. C., Jiménez-Pérez, V. M., & Jayanna, B. K. (2021). Mounesh; Shridhar, AH; Prakash, K. Efficient photocatalytic degradation of crystal violet dye and electrochemical performance of modified MWCNTs/Cd-ZnO nanoparticles with quantum chemical calculations. J. Hazard. Mater. Adv, 2, 100004. doi.org/10.1016/j.hazadv.2021.100004
[27] Reza, K. M., Kurny, A. S. W., & Gulshan, F. (2017). Parameters affecting the photocatalytic degradation of dyes using TiO 2: a review. Applied Water Science, 7, 1569-1578. doi:10.1007/s13201-015-0367-y
[28 Putri, R. A., Safni, S., Jamarun, N., Septiani, U., Kim, M. K., & Zoh, K. D. (2020). Degradation and mineralization of violet-3B dye using CN-codoped TiO 2 photocatalyst. Environmental Engineering Research, 25(4), 529-535.doi: 10.4491/eer.2019.196
[29] Ad, C., Benalia, M., Djedid, M., Elmsellem, H., Ben Saffedine, F., Messaoudi, A., ... & Hammouti, B. (2016). A new lignocellulosic material based on Luffa Cylindrica for Nickel (II) adsorption in aqueous solution. Mor. J. Chem. , 4(4), 1096-1105.
[30] Effiong, J. F., Nyong, A. E., & Obadimu, C. U. G. (2023). Photocatalytic degradation and kinetics of dyes in textile effluent using uv-tio2-w system. J. Mater. Environ. Sci., 14 (8), 935, 946. http://www.jmaterenvironsci.com
[31] Ali, M. H., Abdelkarim, M. S., & Al-Afify, A. D. (2024). Characterization and photodegradation of methylene blue dye using bio-synthesized cerium oxide nanoparticles with Spirulina platensis extract. Discover Applied Sciences, 6(3), 94. https://doi.org/10.1007/s42452-024-05736-1
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the SJPAS journal right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in Samarra Journal of Pure and Applied Science.
The Samarra Journal of Pure and Applied Science permits and encourages authors to archive Pre-print and Post-print items submitted to the journal on personal websites or institutional repositories per the author's choice while providing bibliographic details that credit their submission, and publication in this journal. This includes the archiving of a submitted version, an accepted version, or a published version without any Risks.



