Molecular Diagnosis with Study of the Antibiotics Susceptibility Pattern of Pathogenic Bacteria Isolated from Septicaemia Infections in Hospitals of Al-Ramadi City

Authors

DOI:

https://doi.org/10.54153/sjpas.2025.v7i1.897

Keywords:

bacterial isolates, septicemia, molecular diagnosis, antibiotics

Abstract

One hundred fifty samples of septicemia infections were collected for patients at the Women’s and Children’s Hospital and Ramadi General Teaching Hospital in the city of Ramadi (Anbar Governorate) during the period from 31/7/2023 to 1/11/2023. The samples were cultured on blood agar medium, chocolate agar medium, MacConkey agar medium, and mannitol salt agar medium, The results showed that 36 blood samples out of a total of 150 samples were culture positive, while 114 samples were culture negative,  The results of the diagnosis of bacterial isolates indicated that the most common cause of septicemia is Staphylococcus spp. Bacteria, in the rate of 61% of the total bacterial isolates,  Followed by Klebsiella pneumoniae bacteria at the rate of 28%,  Then Pseudomonas aeruginosa bacteria at the rate of 11% of the total bacterial isolates, which is the lowest percentage in the incidence of infection of septicemia, The isolates were diagnosed using bacteriological and biochemical tests and the Vitek-2 device, and their diagnosis was confirmed molecularly using polymerase chain reaction (PCR) technology, In addition, the resistance to ten types of antibiotics was tested for the bacterial isolates under study using the disc diffusion method. The antibiotics included (Amikacin, Doxycilline, Augmentin, Linezolid, Imipenem, Levofloxacin, Trimemtheprim, Gentamicin, Rifampicin, and Aztreonam); the results of the resistance test showed Antibiotics have a significant difference in resistance and sensitivity rates among bacterial species.

Author Biography

Hana Abdel Latif Yassin, العربية

استاذ مساعد 

ماجستير في احياء مجهرية

قسم علوم الحياة

References

1. Evans, L; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C. M.; French, C.; ... and Levy, M. (2021). Executive summary: surviving sepsis campaign: international guidelines for the management of sepsis and septic shock 2021. Critical care medicine, 49(11), 1974-1982.

2. Stoll, B. J. (2004). Section 2—-Infections of the Neonatal Infant: Pathogenesis and Epidemiology. Nelson Textbook of Pediatrics. 17th ed. Saunders, 623-640.

3. Bromiker, R.; Elron, E.; and Klinger, G. (2020). Do neonatal infections require a positive blood culture?. American journal of perinatology, 37(S 02), S18-S21.

4. Bullock, B.; and Sepsis, M. B. B. (2023). StatPearls Publishing LLC: Tampa. FL, USA.

5. Taylor, T. A.; and Unakal, C. G. (2022). Staphylococcus aureus .Updated 2022 Feb 14. Stat Pearls [Internet]. Stat Pearls Publishing, Treasure Island, FL. Available from .

6. Al-Omari, A.; Al Mutair, A.; Alhumaid, S.; Salih, S.; Alanazi, A.; Albarsan, H.; ... and Al Subaie, M. (2020). The impact of antimicrobial stewardship program implementation at four tertiary private hospitals: results of a five-years pre-post analysis. Antimicrobial Resistance and Infection Control, 9(1), 95.

7. Cassini, A.; Högberg, L. D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G. S.; ... and Hopkins, S. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. The Lancet infectious diseases, 19(1), 56-66.

8. Klinker, K. P.; Hidayat, L. K.; DeRyke, C. A.; DePestel, D. D.; Motyl, M.; and Bauer, K. A. (2021). Antimicrobial stewardship and antibiograms: importance of moving beyond traditional antibiograms. Therapeutic Advances in Infectious Disease, 8, 20499361211011373.

9. Johan, P.; Harley, I.; and Prescott, M. (2003). Laboratory Exercise in Microbiology. McGraw-Hill. USA, 484, 149-1538.

10. Abbas, R. M. (2021). Association of interleukin-6 and interleukin-11 with neonatal sepsis in Diyala Province (Doctoral dissertation, Diyala University).‎

11. Li, J.; Xia, S.; Liu, Y.; Zhang, S.; and Jin, Z. (2022). Bacteriological profile and antibiotic susceptibility pattern of neonatal septicemia and associated factors of ICU Hospitalization Days. Infection and drug resistance, 427-438.

12. Mariani, M.; Parodi, A.; Minghetti, D.; Ramenghi, L. A.; Palmero, C.; Ugolotti, E.; ... and Castagnola, E. (2022). Early and late onset neonatal sepsis: epidemiology and effectiveness of empirical antibacterial therapy in a III level neonatal intensive care unit. Antibiotics, 11(2), 284.

13. Abdul-Rahman, S. M.; and Khider, A. K. (2020). Neonatal sepsis: Bacteriological profile, molecular detection and antimicrobial susceptibility test among pre-term pediatrics in Erbil city, Iraq. Zanco Journal of Medical Sciences (Zanco J Med Sci), 24(2), 256-273.

14. Tsegaye, E. A.; Teklu, D. S.; Bonger, Z. T.; Negeri, A. A.; Bedada, T. L.; and Bitew, A. (2021). Bacterial and fungal profile, drug resistance pattern and associated factors of isolates recovered from blood samples of patients referred to Ethiopian Public Health Institute: cross-sectional study. BMC Infectious Diseases, 21, 1-10.

15. Wen, S. C.; Ezure, Y.; Rolley, L.; Spurling, G.; Lau, C. L.; Riaz, S.; ... and Irwin, A. D. (2021). Gram-negative neonatal sepsis in low-and lower-middle-income countries and WHO empirical antibiotic recommendations: A systematic review and meta-analysis. PLoS medicine, 18(9), e1003787.

16. Wang, J.; Zhang, H.; Yan, J.; and Zhang, T. (2022). Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis. The Journal of Maternal-Fetal and Neonatal Medicine, 35(5), 861-870.

17. Maleki, D.; Jahromy, S. H.; Karizi, S. Z.; and Eslami, P. (2016). The prevalence of acrA and acrB genes among multiple-drug resistant uropathogenic Escherichia coli isolated from patients with UTI in Milad Hospital, Tehran. Avicenna Journal of Clinical Microbiology and Infection, 4(1), 39785-39785.

18. Al-Dahmoshi, H. O. M. (2013). Genotypic and phenotypic investigation of alginate biofilm formation among Pseudomonas aeruginosa isolated from burn victims in Babylon, Iraq. Science Journal of Microbiology, 2013.

19. Hu, Y.; Liu, A.; Vaudrey, J.; Vaiciunaite, B.; Moigboi, C.; McTavish, S. M.; ... and Coates, A. (2015). Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus. PLoS One, 10(2), e0117664.

20. Guo, Y.; Song, G.; Sun, M.; Wang, J.; and Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in cellular and infection microbiology, 10, 107.

21. Saeed, C. H.; AL-Otraqchi, K. I.; and Mansoor, I. Y. (2015). Prevalence of urinary tract infections and antibiotics susceptibility pattern among infants and young children in Erbil city. Zanco Journal of Medical Sciences (Zanco J Med Sci), 19(1), 915_922-915_922.

22. Sarathbabu, R. M. B. B. S.; Rajkumari, N.; and Ramani, T. V. (2013). Characterization of Coagulase negative Staphylococci isolated from urine, pus, sputum and blood samples. Int J Pharm Sci Inven, 2, 37-46.

23. Abdelraheem, W. M.; Abdelkader, A. E.; Mohamed, E. S.; and Mohammed, M. S. (2020). Detection of biofilm formation and assessment of biofilm genes expression in different Pseudomonas aeruginosa clinical isolates. Meta Gene, 23, 100646.

24. Panda, S. S.; Singh, K.; Pati, S.; Singh, R.; Kant, R.; and Dwivedi, G. R. (2022). Pseudomonas aeruginosa: pathogenic adapter bacteria. Antimicrobial Resistance: Underlying Mechanisms and Therapeutic Approaches, 113-135.

25. Flake, P.; Moorby, P.; Golson, S.; Salz, A.; and Davidmann, S. (2020). Verilog HDL and its ancestors and descendants. Proceedings of the ACM on Programming Languages, 4(HOPL), 1-90.

Published

2025-03-30

How to Cite

Seger, M. N., & Yassin, H. A. L. (2025). Molecular Diagnosis with Study of the Antibiotics Susceptibility Pattern of Pathogenic Bacteria Isolated from Septicaemia Infections in Hospitals of Al-Ramadi City . Samarra Journal of Pure and Applied Science, 7(1), 145–156. https://doi.org/10.54153/sjpas.2025.v7i1.897

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.