Evaluate the Efficiency of Copper Nanoparticles and Compare them with a Group of Antibiotics Against Escherichia Coli Bacteria Isolated from Urinary Tract Patients
DOI:
https://doi.org/10.54153/sjpas.2025.v7i1.920Keywords:
Antibiotics ، Copper nanoparticles ، Urinary tract infection ، Escherichia coliAbstract
This study aims to assess the inhibitory effectiveness of copper nanoparticles against 47 diagnosed isolations belonging to Escherichia coli bacteria out of 100 isolated from Urinary tract patients and then compare them with 12 types of antibiotics. This study was conducted in the postgraduate laboratory of the Department of Life Sciences Faculty of Education of Samarra University from 3/9/2023 to 20/3/2024. The statistical analysis showed moral differences in the inhibitory diameters of nanoscale copper particles compared to antibiotics towards E.coli bacteria. Among the highest antibiotics that gave high inhibition are antibiotic antibiotics 40.3 40.1, 40.1, 40, 34.6, 38.5 at concentrations 0.2, 0.1, 0.075, 0.050, 0.025 mg/ml, respectively, followed by anti-Cefotaxime giving high effectiveness with inhibition diameters 40.3, 40.1, 39.7 38.2, 34.1, mm, followed by counter 40.4 Ceftriaxone 40.3, 34.5, 32.2, 30.0 mm, followed by antibiotic Tetracycline gave drops inhibited 40.3, 40.1, 40, 38.4 30.1, mm, as for anti-Gentamicin it was inhibitive diameters 40.1, 37.4, 40.1, 34.8 33.2, mm, the anti-Samacycline has given drops inhibited, 39.4 38.0, 34.7, 32.5 30.1, mm, while Nitrofurantoin has given inhibition drops 35.1, 34,33.4, 32.4, 30.0 mm, as for the anti-Ciprofloxacin it gave the diameters inhibited 40.1 38.2, 25.7, 31.0, 23.5 mm, the anti-Azithromycin it gave the drops inhibited, 31.5 29.4, 30, 28.0, 25.6 mm, the anti-Sulfamethoxazole has given drops inhibited by 10.1,13.1 17.7, 14.7, 13.1, mm. Amoxicillin gave inhibition droplets, 28, 22.8 12.1, 14.5,14.5mm. The anti-Ampicillin gave diameters inhibited by 16.7 13.1,, 16.4 and 13.0, 10.1 mm. The inhibitory effectiveness results of CuONPs against E.coli bacteria as the inhibitory effectiveness diameter rates varied, as the inhibitory diameters were 30.1 28.1, 26.1, 25.2, 33.2, mm respectively at 0.2, 0.1, 0.075, 0.050, 0.025 mg/mL. These results of the possession of nanoparticles have shown high inhibitory effectiveness against bacteria.
References
1. Yang, Y., Choi, J., Chen, Y., Invernizzi, P., Yang, G., Zhang, W., & Gershwin, M. E. (2022). E.coli and the etiology of human PBC: Antimitochondrial antibodies and spreading determinants. Hepatology, 75(2), 266-279.
2. Murray, B. O., Flores, C., Williams, C., Flusberg, D. A., Marr, E. E., Kwiatkowska, K. M., & Rohn, J. L. (2021). Recurrent urinary tract infection: a mystery in search of better model systems. Frontiers in cellular and infection microbiology, 11, 691210.
3. Vasudevan, R. (2014). Urinary tract infection: an overview of the infection and the associated risk factors. J Microbiol Exp, 1(2), 00008.
4. Tullus, K., & Shaikh, N. (2020). Urinary tract infections in children. The Lancet, 395(10237), 1659-1668.
5. Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature reviews microbiology, 13(5), 269-284.
6. Forbes, B. A.; Sahm, D. F. and Weissfeld, A. S. (2007). Bailey and Scott, S. Diagnostic Microbiology. 12th ed. Mosby. Inc. U.S.A.
7. Tanagho, E. A. and Jack, W. M. (2000). Smiths General urology. 15thEdn. Lange medical books, USA.
8. Denamur, E., Clermont, O., Bonacorsi, S., & Gordon, D. (2021). Thepopulation genetics of pathogenic Escherichia coli. Nature Reviews Microbiology, 19(1), 37-54.
9. Foxman, B. (2010). The epidemiology of urinary tract infection. Nature Reviews Urology, 7(12), 653-660.
10. Idalia, V. M. N., & Bernardo, F. (2017). Escherichia coli as a model organism and its application in biotechnology. Recent Adv. Physiol. Pathog. Biotechnol. Appl. Tech Open Rij. Croat, 13, 253-274.
11. Priya, M., Venkatesan, R., Deepa, S., Sana, S. S., Arumugam, S., Karami, A. M.,& Kim, S. C. (2023). Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Scientific Reports, 13(1), 18838.
12. Javed, R., Ghonaim, R., Shathili, A., Khalifa, S. A., & El-Seedi, H. R. (2021). Phytonanotechnology: A greener approach for biomedical applications. In Biogenic Nanoparticles for Cancer Theranostics (pp. 43-86). Elsevier.
13. Nzilu, D. M., Madivoli, E. S., Makhanu, D. S., Wanakai, S. I., Kiprono, G. K., & Kareru, P. G. (2023). Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Scientific Reports, 13(1), 14030.
14. Mohamed, A. A., Abu-Elghait, M., Ahmed, N. E., & Salem, S. S. (2021). Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biological trace element research, 199(7), 2788-2799.
15. Ryan KJ, Ray CG (2004). McGraw Hill . Medical Microbiology
16. Procop, G.; Church, D.; Hall, J. W.; Koneman, E.; Schreckenberger, P. and Woods, G. (2016). Koneman’s Color Atlas and Textbook of DiagnosticMicrobiology. 7th ed. Lippincott Williams and Willkins. Philadelphia.Baltimore. New York. London.
17. Forbes, B. A.; Sahm, D. F. and Weissfeld, A. S. (2007). Bailey and Scott, S. Diagnostic Microbiology. 12th ed. Mosby. Inc. U.S.A.
18. Levinson, W. (2016). Review of Medical Microbiology and Immunology. 14thed.McGraw-Hill education, Inc. PP 821.
19. Abbas H M, Hasan M A and Ali S D (2019). Effect of bee venom on MRSA isolated from patient’s wounds at Tikrit teaching hospital. Indian J. Publ. Hlth Res. Develop. 10(10).
20. Jackson, T. C.; Uwah, T. O.; Ifekpolugo, N. L. & Emmanuel, N. A. (2018). Comparison of antimicrobial activities of silver nanoparticles biosynthesized from some citrus species. American Journal of nano research and applications. 6(2), Pp: 54-59.
21. السعدي, زهراء حميد علوان.(2019). الكشف المظهري والجزيئي لأنظمة الدفق في بكتريا E.coli المعزولة من اصابات المسالك البولية .رسالة ماجستير/ كلية التربية للعلوم الصرفة / جامعة بغداد.
22. Brown, A. E., Smith, H. A. (2017). Benson´s Microbiological applications: laboratory manual in general microbiology .14th ed. McGraw-Hill. New York.
23. Tajbakhsh, E.; Ahmadi, P. Abedpour-Dehkordi, E.; Arbab-Soleimani, N. andKhamesipour, F. (2016). Biofilm Formation, Antimicrobial Susceptibility,Serogroups and Virulence Genes of Uropathogenic E.coli Isolated from ClinicalSamples in Iran. Antimicrob Resist Infect Control. 5(11): 1-8.
24. Suresh, A., Ranjan, A., Jadhav, S., Hussain, A., Shaik, S., Alam, M.,& Ahmed, N. (2018). Molecular genetic and functional analysis of pks-harboring, extra-intestinal pathogenic Escherichia coli from India. Frontiers in Microbiology, 9, 418035.
25. Islam, M. A.; Kabir, S. M. L. and Seel, S. M. L. (2016). Molecular Detection andCharacterization of Escherichia coli Isolated from Raw Milk Sold in Different Markets of Bangladesh. Bangl J Vet Med. 14 (2): 271-275.
26. Alqurashi, R. E. M.(2022). Phenotypic and Genotypic Characterization of Extended-Spectrum-β-Lactamase, AmpC, and Carbapenemase Producing Gram negative Bacteria Isolated from Intensive Care Unit Patients in Wasit Province. Master thesis. College of Medicine University of Wasit.
27. Bera, T. K. (2014). Bioelectrical impedance methods for noninvasive health monitoring: a review. Journal of medical engineering, 2014.
28. Abdu, A., Kachallah, M., & Bolus, D. Y. (2018). Antibiotic susceptibility patterns of Uropathogenic Escherichia coli among patients with urinary tract infections in a tertiary care hospital in Maiduguri, North Eastern, Nigeria. J Biosci Biotechnol Discov, 3, 14-24.
29. Al-Najjar, F. M. (2020). Molecular bacteriological study of Escherichia.coli bacteria isolated from patients with urinary tract inflammation using bioactive effects. Master's thesis/Faculty of Science/University of Tikrit.
30. Mahmoud, A. H.(2020). Biosysnthesis and characterization of some nanoparticles by using plants extracts and study their antimicrobial property against pathogenic bacteria isolated from wounds and burns. Master thesis. College of Sciences, University of Diyala. pp: 52-54.
31. Jemil, K.; Sandeep, B. & Pola, S. (2017). Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Allophylus serratus Leaf and LeafDerived Callus Extracts Mediated Silver Nanoparticles, Journal of Nanomaterials, Volume 2017, Article ID 4213275, 11 pages.
32. Rezayat, M., Yazdi, M. S., Noghani, M. T., & Ahmadi, R. (2020). Bactericidal properties of copper-tin nanoparticles on Escherichia coli in a liquid environment. Plasma, 3(3), 153-165.
33. Lai, M. J., Huang, Y. W., Chen, H. C., Tsao, L. I., Chang Chien, C. F., Singh, B., & Liu, B. R. (2022). Effect of size and concentration of copper nanoparticles on the antimicrobial activity in Escherichia coli through multiple mechanisms. Nanomaterials, 12(21), 3715.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors retain copyright and grant the SJPAS journal right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in Samarra Journal of Pure and Applied Science.
The Samarra Journal of Pure and Applied Science permits and encourages authors to archive Pre-print and Post-print items submitted to the journal on personal websites or institutional repositories per the author's choice while providing bibliographic details that credit their submission, and publication in this journal. This includes the archiving of a submitted version, an accepted version, or a published version without any Risks.



